Properties

Label 2.113.abb_pm
Base field $\F_{113}$
Dimension $2$
$p$-rank $2$
Ordinary yes
Supersingular no
Simple no
Geometrically simple no
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{113}$
Dimension:  $2$
L-polynomial:  $( 1 - 16 x + 113 x^{2} )( 1 - 11 x + 113 x^{2} )$
  $1 - 27 x + 402 x^{2} - 3051 x^{3} + 12769 x^{4}$
Frobenius angles:  $\pm0.228810695365$, $\pm0.326901256467$
Angle rank:  $2$ (numerical)
Jacobians:  $27$
Isomorphism classes:  177

This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $2$
Slopes:  $[0, 0, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $10094$ $164027500$ $2087334060896$ $26590826080000000$ $339459185995325039294$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $87$ $12845$ $1446624$ $163086513$ $18424484607$ $2081950010210$ $235260519481599$ $26584441763595553$ $3004041937987073952$ $339456738993918837725$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 27 curves (of which all are hyperelliptic):

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{113}$.

Endomorphism algebra over $\F_{113}$
The isogeny class factors as 1.113.aq $\times$ 1.113.al and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is:

Base change

This is a primitive isogeny class.

Twists

Below are some of the twists of this isogeny class.

TwistExtension degreeCommon base change
2.113.af_by$2$(not in LMFDB)
2.113.f_by$2$(not in LMFDB)
2.113.bb_pm$2$(not in LMFDB)

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
2.113.af_by$2$(not in LMFDB)
2.113.f_by$2$(not in LMFDB)
2.113.bb_pm$2$(not in LMFDB)
2.113.az_oq$4$(not in LMFDB)
2.113.ad_cu$4$(not in LMFDB)
2.113.d_cu$4$(not in LMFDB)
2.113.z_oq$4$(not in LMFDB)