Invariants
Base field: | $\F_{113}$ |
Dimension: | $2$ |
L-polynomial: | $1 - 27 x + 401 x^{2} - 3051 x^{3} + 12769 x^{4}$ |
Frobenius angles: | $\pm0.224396947475$, $\pm0.330260006094$ |
Angle rank: | $2$ (numerical) |
Number field: | 4.0.53505261.1 |
Galois group: | $D_{4}$ |
Jacobians: | $36$ |
Isomorphism classes: | 36 |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $10093$ | $164001157$ | $2087216987989$ | $26590612460204709$ | $339459088987014178048$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $87$ | $12843$ | $1446543$ | $163085203$ | $18424479342$ | $2081950210923$ | $235260524182407$ | $26584441808952931$ | $3004041937977740079$ | $339456738987092306718$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 36 curves (of which all are hyperelliptic):
- $y^2=39 x^6+54 x^5+15 x^4+28 x^3+15 x^2+39 x+15$
- $y^2=55 x^6+70 x^5+82 x^4+83 x^3+18 x^2+43 x+87$
- $y^2=83 x^6+10 x^5+74 x^4+57 x^3+33 x^2+102 x+27$
- $y^2=24 x^6+101 x^5+86 x^4+65 x^3+4 x^2+29 x+13$
- $y^2=69 x^6+68 x^5+66 x^4+85 x^3+58 x^2+63 x+26$
- $y^2=73 x^6+47 x^5+33 x^4+39 x^3+11 x^2+56 x+53$
- $y^2=34 x^6+59 x^5+77 x^4+30 x^3+7 x^2+112 x+12$
- $y^2=73 x^6+4 x^5+12 x^4+21 x^3+99 x^2+58 x+37$
- $y^2=55 x^6+82 x^5+27 x^4+34 x^3+3 x^2+3 x+45$
- $y^2=74 x^6+26 x^5+11 x^4+10 x^3+62 x^2+6 x+101$
- $y^2=94 x^6+51 x^5+48 x^4+87 x^3+16 x^2+107 x+20$
- $y^2=86 x^6+37 x^5+111 x^4+16 x^3+46 x^2+8 x+98$
- $y^2=66 x^6+32 x^5+90 x^4+11 x^3+77 x^2+80 x+54$
- $y^2=85 x^6+73 x^5+109 x^4+93 x^3+50 x^2+73 x+40$
- $y^2=104 x^6+69 x^5+62 x^4+78 x^3+91 x^2+99 x+78$
- $y^2=107 x^6+34 x^5+69 x^4+34 x^3+27 x^2+90 x+17$
- $y^2=65 x^6+18 x^5+11 x^4+15 x^3+83 x^2+15 x+1$
- $y^2=82 x^6+102 x^5+73 x^4+61 x^3+34 x^2+48 x+98$
- $y^2=47 x^6+49 x^5+107 x^4+105 x^3+107 x^2+23 x+88$
- $y^2=63 x^6+95 x^5+86 x^3+25 x^2+8 x+24$
- and 16 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{113}$.
Endomorphism algebra over $\F_{113}$The endomorphism algebra of this simple isogeny class is 4.0.53505261.1. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.113.bb_pl | $2$ | (not in LMFDB) |