Invariants
Base field: | $\F_{113}$ |
Dimension: | $2$ |
L-polynomial: | $( 1 - 17 x + 113 x^{2} )( 1 - 10 x + 113 x^{2} )$ |
$1 - 27 x + 396 x^{2} - 3051 x^{3} + 12769 x^{4}$ | |
Frobenius angles: | $\pm0.205038125192$, $\pm0.344123913111$ |
Angle rank: | $2$ (numerical) |
Jacobians: | $24$ |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $10088$ | $163869472$ | $2086631659424$ | $26589534595721344$ | $339458529331668337448$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $87$ | $12833$ | $1446138$ | $163078593$ | $18424448967$ | $2081951089598$ | $235260545577207$ | $26584442022677761$ | $3004041938225353434$ | $339456738962598011393$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 24 curves (of which all are hyperelliptic):
- $y^2=94 x^6+86 x^5+4 x^4+36 x^3+77 x^2+70 x+56$
- $y^2=20 x^6+72 x^5+104 x^4+31 x^3+110 x^2+53 x+74$
- $y^2=99 x^6+42 x^5+15 x^4+50 x^3+22 x^2+48 x+111$
- $y^2=99 x^5+5 x^4+80 x^3+84 x^2+7 x+99$
- $y^2=14 x^6+94 x^5+6 x^4+80 x^3+27 x^2+8 x+61$
- $y^2=90 x^6+107 x^5+15 x^4+9 x^3+39 x^2+20 x+105$
- $y^2=19 x^6+100 x^5+4 x^4+32 x^3+55 x^2+99 x+97$
- $y^2=84 x^6+102 x^5+100 x^4+91 x^3+85 x^2+32 x+12$
- $y^2=17 x^6+51 x^5+8 x^4+32 x^3+72 x^2+44 x$
- $y^2=57 x^6+28 x^5+39 x^4+91 x^3+5 x^2+63 x+23$
- $y^2=74 x^6+54 x^5+40 x^4+21 x^3+89 x^2+64 x+72$
- $y^2=86 x^6+42 x^5+99 x^4+86 x^3+x^2+67 x+86$
- $y^2=103 x^6+93 x^5+46 x^4+63 x^3+54 x^2+91 x+45$
- $y^2=8 x^6+85 x^5+46 x^4+61 x^3+111 x^2+84 x+52$
- $y^2=107 x^6+63 x^5+93 x^4+20 x^3+43 x^2+58 x+11$
- $y^2=86 x^6+72 x^5+33 x^4+90 x^3+29 x^2+51 x+84$
- $y^2=79 x^6+13 x^5+33 x^4+95 x^3+90 x^2+110 x+87$
- $y^2=79 x^6+103 x^5+13 x^4+41 x^3+58 x^2+106 x+84$
- $y^2=78 x^6+2 x^5+102 x^4+97 x^3+17 x^2+106 x+53$
- $y^2=65 x^6+5 x^5+109 x^4+84 x^3+100 x^2+20 x+38$
- $y^2=24 x^6+107 x^5+106 x^4+9 x^3+34 x^2+83 x+89$
- $y^2=44 x^6+94 x^5+48 x^4+69 x^3+20 x^2+61 x+3$
- $y^2=91 x^6+18 x^5+83 x^4+58 x^3+33 x^2+27 x+45$
- $y^2=48 x^6+6 x^5+85 x^4+107 x^3+76 x^2+16 x+54$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{113}$.
Endomorphism algebra over $\F_{113}$The isogeny class factors as 1.113.ar $\times$ 1.113.ak and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is: |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.113.ah_ce | $2$ | (not in LMFDB) |
2.113.h_ce | $2$ | (not in LMFDB) |
2.113.bb_pg | $2$ | (not in LMFDB) |