Invariants
Base field: | $\F_{113}$ |
Dimension: | $2$ |
L-polynomial: | $1 - 27 x + 393 x^{2} - 3051 x^{3} + 12769 x^{4}$ |
Frobenius angles: | $\pm0.194712791181$, $\pm0.350958666655$ |
Angle rank: | $2$ (numerical) |
Number field: | 4.0.199642813.1 |
Galois group: | $D_{4}$ |
Jacobians: | $37$ |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $10085$ | $163790485$ | $2086280490845$ | $26588880064281925$ | $339458133847188204800$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $87$ | $12827$ | $1445895$ | $163074579$ | $18424427502$ | $2081951516459$ | $235260556685871$ | $26584442138631331$ | $3004041938559431535$ | $339456738954771153182$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 37 curves (of which all are hyperelliptic):
- $y^2=54 x^6+102 x^5+77 x^4+43 x^3+28 x^2+52 x+112$
- $y^2=86 x^6+77 x^5+6 x^4+46 x^3+63 x^2+5 x+78$
- $y^2=71 x^6+70 x^5+107 x^4+79 x^3+58 x^2+3 x+33$
- $y^2=65 x^6+39 x^5+72 x^4+34 x^3+21 x^2+93 x+83$
- $y^2=73 x^6+18 x^5+19 x^4+98 x^3+95 x^2+103 x+77$
- $y^2=67 x^6+91 x^5+84 x^4+97 x^3+110 x^2+19 x+35$
- $y^2=98 x^6+2 x^5+52 x^4+86 x^3+27 x^2+95 x+45$
- $y^2=19 x^6+50 x^5+9 x^4+106 x^3+48 x^2+15 x+50$
- $y^2=6 x^6+108 x^5+67 x^4+56 x^3+19 x^2+108 x+108$
- $y^2=52 x^6+67 x^5+56 x^4+42 x^3+103 x^2+55 x+31$
- $y^2=3 x^6+110 x^5+102 x^4+91 x^3+34 x^2+98 x+25$
- $y^2=93 x^6+40 x^5+108 x^4+50 x^3+15 x^2+56 x+32$
- $y^2=57 x^6+101 x^5+43 x^4+29 x^3+18 x^2+38 x+63$
- $y^2=77 x^6+x^5+5 x^4+68 x^3+107 x^2+49 x+38$
- $y^2=13 x^6+3 x^5+93 x^4+13 x^3+23 x^2+28 x+67$
- $y^2=12 x^6+92 x^5+3 x^4+80 x^3+95 x^2+96 x+69$
- $y^2=80 x^6+84 x^4+24 x^3+80 x^2+x+110$
- $y^2=76 x^6+83 x^5+19 x^4+99 x^3+20 x^2+45 x+48$
- $y^2=9 x^6+102 x^5+21 x^4+96 x^3+19 x^2+73 x+85$
- $y^2=107 x^6+103 x^5+86 x^4+35 x^3+39 x^2+96 x+73$
- and 17 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{113}$.
Endomorphism algebra over $\F_{113}$The endomorphism algebra of this simple isogeny class is 4.0.199642813.1. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.113.bb_pd | $2$ | (not in LMFDB) |