Invariants
Base field: | $\F_{113}$ |
Dimension: | $2$ |
L-polynomial: | $1 - 27 x + 382 x^{2} - 3051 x^{3} + 12769 x^{4}$ |
Frobenius angles: | $\pm0.160219280575$, $\pm0.371091486596$ |
Angle rank: | $2$ (numerical) |
Number field: | 4.0.442719900.1 |
Galois group: | $D_{4}$ |
Jacobians: | $132$ |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $10074$ | $163501020$ | $2084993053056$ | $26586429979262400$ | $339456300715300877994$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $87$ | $12805$ | $1445004$ | $163059553$ | $18424328007$ | $2081952431890$ | $235260585775239$ | $26584442460059713$ | $3004041940284342492$ | $339456738957925867525$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 132 curves (of which all are hyperelliptic):
- $y^2=79 x^6+54 x^5+28 x^4+79 x^3+47 x^2+40 x+77$
- $y^2=49 x^6+51 x^5+10 x^4+47 x^3+7 x^2+83 x+75$
- $y^2=67 x^6+84 x^5+100 x^4+34 x^3+32 x^2+29 x+87$
- $y^2=76 x^6+10 x^5+49 x^4+30 x^3+98 x^2+46 x+29$
- $y^2=94 x^6+21 x^5+31 x^4+16 x^3+72 x+68$
- $y^2=43 x^6+7 x^5+11 x^4+57 x^3+3 x^2+95 x+42$
- $y^2=100 x^6+98 x^5+78 x^4+98 x^3+50 x^2+72 x+51$
- $y^2=40 x^6+81 x^5+61 x^4+27 x^3+73 x^2+47 x+56$
- $y^2=40 x^6+97 x^5+67 x^4+34 x^3+104 x^2+23 x+10$
- $y^2=70 x^6+16 x^5+99 x^4+80 x^3+34 x^2+69 x+33$
- $y^2=51 x^6+67 x^5+94 x^4+64 x^3+7 x^2+55 x+19$
- $y^2=95 x^6+105 x^5+13 x^4+63 x^3+63 x^2+98 x+61$
- $y^2=80 x^6+74 x^5+27 x^4+45 x^3+91 x^2+74 x+46$
- $y^2=70 x^6+44 x^5+105 x^4+38 x^3+105 x^2+25 x+30$
- $y^2=95 x^6+95 x^5+25 x^4+91 x^3+65 x^2+87 x+83$
- $y^2=35 x^6+104 x^5+43 x^4+25 x^3+79 x^2+57 x+66$
- $y^2=3 x^6+3 x^5+74 x^4+4 x^3+14 x^2+12 x+69$
- $y^2=33 x^6+22 x^5+49 x^4+69 x^3+9 x^2+14 x+39$
- $y^2=85 x^6+72 x^5+63 x^4+11 x^3+38 x^2+77 x+84$
- $y^2=9 x^6+44 x^5+81 x^4+22 x^3+24 x^2+26 x+97$
- and 112 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{113}$.
Endomorphism algebra over $\F_{113}$The endomorphism algebra of this simple isogeny class is 4.0.442719900.1. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.113.bb_os | $2$ | (not in LMFDB) |