Invariants
Base field: | $\F_{113}$ |
Dimension: | $2$ |
L-polynomial: | $1 - 27 x + 377 x^{2} - 3051 x^{3} + 12769 x^{4}$ |
Frobenius angles: | $\pm0.145073430868$, $\pm0.378655981268$ |
Angle rank: | $2$ (numerical) |
Number field: | 4.0.10525.1 |
Galois group: | $D_{4}$ |
Jacobians: | $162$ |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $10069$ | $163369525$ | $2084407946221$ | $26585290257013125$ | $339455268499446924544$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $87$ | $12795$ | $1444599$ | $163052563$ | $18424271982$ | $2081952507435$ | $235260592662399$ | $26584442539252003$ | $3004041940960598127$ | $339456738969032344350$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 162 curves (of which all are hyperelliptic):
- $y^2=35 x^6+44 x^5+50 x^4+92 x^3+81 x^2+39 x+22$
- $y^2=67 x^6+61 x^5+25 x^4+28 x^3+19 x^2+91 x+58$
- $y^2=17 x^6+51 x^5+61 x^4+100 x^3+76 x^2+40 x+34$
- $y^2=60 x^6+99 x^5+4 x^4+99 x^3+49 x^2+66 x+20$
- $y^2=86 x^6+6 x^5+58 x^4+60 x^3+68 x^2+98 x+52$
- $y^2=55 x^6+69 x^5+94 x^4+86 x^3+26 x^2+45 x+25$
- $y^2=51 x^6+103 x^5+32 x^4+69 x^3+5 x^2+96 x+30$
- $y^2=72 x^6+37 x^5+112 x^4+71 x^3+103 x^2+47 x+49$
- $y^2=37 x^6+99 x^5+80 x^4+90 x^3+62 x^2+59 x+108$
- $y^2=91 x^6+79 x^5+50 x^4+107 x^3+100 x^2+26 x+103$
- $y^2=110 x^6+79 x^5+53 x^4+22 x^3+9 x^2+77 x+73$
- $y^2=92 x^6+28 x^5+18 x^4+98 x^3+87 x^2+66 x+100$
- $y^2=102 x^6+106 x^5+57 x^4+22 x^2+65 x+47$
- $y^2=20 x^6+108 x^5+56 x^4+77 x^3+105 x^2+3 x+38$
- $y^2=99 x^6+84 x^5+75 x^4+52 x^3+44 x^2+73 x+46$
- $y^2=82 x^6+57 x^5+50 x^4+58 x^3+107 x^2+101 x+14$
- $y^2=66 x^6+31 x^5+60 x^4+52 x^3+112 x^2+51 x+39$
- $y^2=17 x^6+21 x^5+78 x^4+72 x^3+100 x^2+65 x+81$
- $y^2=17 x^6+97 x^5+27 x^4+76 x^3+4 x^2+39 x+31$
- $y^2=5 x^6+97 x^5+79 x^4+24 x^3+15 x^2+93 x+97$
- and 142 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{113}$.
Endomorphism algebra over $\F_{113}$The endomorphism algebra of this simple isogeny class is 4.0.10525.1. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.113.bb_on | $2$ | (not in LMFDB) |