Invariants
Base field: | $\F_{113}$ |
Dimension: | $2$ |
L-polynomial: | $1 - 27 x + 375 x^{2} - 3051 x^{3} + 12769 x^{4}$ |
Frobenius angles: | $\pm0.138962790671$, $\pm0.381491622538$ |
Angle rank: | $2$ (numerical) |
Number field: | 4.0.560617477.1 |
Galois group: | $D_{4}$ |
Jacobians: | $34$ |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $10067$ | $163316941$ | $2084173919363$ | $26584829809461541$ | $339454820792392732592$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $87$ | $12791$ | $1444437$ | $163049739$ | $18424247682$ | $2081952477551$ | $235260594260961$ | $26584442557049683$ | $3004041941150020515$ | $339456738973951795646$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 34 curves (of which all are hyperelliptic):
- $y^2=91 x^6+67 x^5+84 x^4+87 x^3+25 x^2+97 x+106$
- $y^2=110 x^6+61 x^5+33 x^4+47 x^3+40 x^2+62 x+7$
- $y^2=104 x^6+96 x^5+105 x^4+33 x^3+72 x^2+23 x+4$
- $y^2=39 x^6+48 x^5+60 x^4+43 x^3+112 x^2+12 x+26$
- $y^2=66 x^6+23 x^5+105 x^4+88 x^3+24 x^2+93 x+75$
- $y^2=110 x^6+107 x^5+108 x^4+94 x^3+37 x^2+15 x+40$
- $y^2=87 x^6+2 x^5+73 x^4+25 x^3+94 x^2+75$
- $y^2=47 x^6+78 x^5+6 x^4+38 x^2+12 x+42$
- $y^2=98 x^6+108 x^5+7 x^4+27 x^3+34 x^2+44 x+11$
- $y^2=112 x^5+101 x^4+104 x^3+97 x^2+48 x+79$
- $y^2=73 x^6+59 x^5+42 x^4+27 x^3+102 x^2+43 x+98$
- $y^2=42 x^6+68 x^5+112 x^4+45 x^3+51 x^2+94 x+1$
- $y^2=27 x^6+89 x^5+59 x^4+60 x^3+33 x^2+51 x+44$
- $y^2=44 x^6+106 x^5+80 x^4+106 x^3+82 x^2+65 x+108$
- $y^2=4 x^6+101 x^5+84 x^4+11 x^3+40 x^2+79 x+74$
- $y^2=9 x^6+31 x^5+43 x^4+54 x^3+88 x^2+54 x+49$
- $y^2=74 x^6+57 x^5+52 x^4+7 x^3+80 x^2+29 x+63$
- $y^2=88 x^6+61 x^5+30 x^4+109 x^3+21 x+59$
- $y^2=81 x^6+3 x^5+9 x^4+41 x^3+81 x^2+79 x+28$
- $y^2=8 x^6+45 x^5+31 x^4+x^3+34 x^2+2 x+50$
- and 14 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{113}$.
Endomorphism algebra over $\F_{113}$The endomorphism algebra of this simple isogeny class is 4.0.560617477.1. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.113.bb_ol | $2$ | (not in LMFDB) |