Invariants
Base field: | $\F_{113}$ |
Dimension: | $2$ |
L-polynomial: | $1 - 27 x + 374 x^{2} - 3051 x^{3} + 12769 x^{4}$ |
Frobenius angles: | $\pm0.135883189855$, $\pm0.382873852844$ |
Angle rank: | $2$ (numerical) |
Number field: | 4.0.4729788.1 |
Galois group: | $D_{4}$ |
Jacobians: | $44$ |
Isomorphism classes: | 44 |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $10066$ | $163290652$ | $2084056909312$ | $26584598608795584$ | $339454589477261669026$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $87$ | $12789$ | $1444356$ | $163048321$ | $18424235127$ | $2081952449682$ | $235260594807927$ | $26584442562766849$ | $3004041941221321332$ | $339456738976391335509$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 44 curves (of which all are hyperelliptic):
- $y^2=93 x^6+77 x^5+44 x^4+75 x^3+38 x^2+x+58$
- $y^2=39 x^6+43 x^5+91 x^4+25 x^3+63 x^2+9 x+55$
- $y^2=12 x^6+29 x^5+30 x^4+86 x^3+111 x^2+36 x+59$
- $y^2=70 x^6+53 x^5+56 x^4+95 x^3+102 x^2+46 x+99$
- $y^2=108 x^6+111 x^5+14 x^4+93 x^3+76 x^2+30 x+46$
- $y^2=65 x^6+44 x^5+110 x^4+27 x^3+48 x^2+36 x+63$
- $y^2=24 x^6+105 x^5+45 x^4+69 x^3+25 x^2+105 x+112$
- $y^2=42 x^6+71 x^5+80 x^4+88 x^3+27 x^2+93 x+45$
- $y^2=16 x^6+73 x^5+31 x^4+53 x^3+32 x^2+16 x+35$
- $y^2=76 x^6+94 x^5+5 x^4+10 x^3+16 x^2+48 x+104$
- $y^2=75 x^6+100 x^5+12 x^4+86 x^3+7 x^2+69 x+107$
- $y^2=70 x^6+15 x^5+70 x^4+56 x^3+77 x^2+99 x+37$
- $y^2=111 x^6+111 x^5+15 x^4+49 x^3+70 x^2+56 x+6$
- $y^2=47 x^6+99 x^5+67 x^4+65 x^3+27 x^2+64 x+12$
- $y^2=74 x^6+39 x^5+48 x^4+30 x^3+22 x^2+x+112$
- $y^2=101 x^6+65 x^5+65 x^4+48 x^3+56 x^2+74 x+107$
- $y^2=50 x^6+110 x^5+93 x^4+13 x^3+70 x^2+104 x+31$
- $y^2=36 x^6+64 x^5+63 x^4+85 x^3+12 x^2+53 x+37$
- $y^2=2 x^6+42 x^5+59 x^4+84 x^3+50 x^2+30 x+37$
- $y^2=98 x^6+9 x^5+48 x^4+59 x^3+56 x^2+12 x+68$
- and 24 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{113}$.
Endomorphism algebra over $\F_{113}$The endomorphism algebra of this simple isogeny class is 4.0.4729788.1. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.113.bb_ok | $2$ | (not in LMFDB) |