Invariants
Base field: | $\F_{113}$ |
Dimension: | $2$ |
L-polynomial: | $1 - 27 x + 373 x^{2} - 3051 x^{3} + 12769 x^{4}$ |
Frobenius angles: | $\pm0.132782754227$, $\pm0.384233787323$ |
Angle rank: | $2$ (numerical) |
Number field: | 4.0.582374133.1 |
Galois group: | $D_{4}$ |
Jacobians: | $152$ |
Isomorphism classes: | 152 |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $10065$ | $163264365$ | $2083939901505$ | $26584366756857525$ | $339454353187720531200$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $87$ | $12787$ | $1444275$ | $163046899$ | $18424222302$ | $2081952413179$ | $235260595185171$ | $26584442566293571$ | $3004041941274985695$ | $339456738978775586782$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 152 curves (of which all are hyperelliptic):
- $y^2=6 x^6+71 x^5+85 x^4+67 x^3+84 x^2+15 x+91$
- $y^2=93 x^6+100 x^5+84 x^4+32 x^3+82 x^2+67 x+41$
- $y^2=15 x^6+6 x^5+111 x^4+70 x^3+52 x^2+23 x+77$
- $y^2=3 x^6+67 x^5+109 x^4+76 x^3+21 x^2+7 x+19$
- $y^2=73 x^6+29 x^5+96 x^4+31 x^3+46 x^2+51 x+45$
- $y^2=44 x^6+75 x^5+18 x^4+111 x^3+33 x^2+7 x+3$
- $y^2=75 x^6+38 x^5+99 x^4+44 x^3+81 x^2+28 x+6$
- $y^2=45 x^6+79 x^5+19 x^4+87 x^3+70 x^2+21 x+41$
- $y^2=64 x^6+95 x^5+67 x^4+77 x^3+14 x^2+72 x+82$
- $y^2=96 x^6+47 x^5+100 x^4+72 x^3+32 x^2+37 x+25$
- $y^2=16 x^6+60 x^5+14 x^4+36 x^3+110 x^2+54 x+66$
- $y^2=101 x^6+35 x^5+43 x^4+12 x^3+48 x^2+96 x+74$
- $y^2=35 x^6+31 x^5+89 x^4+30 x^3+47 x^2+24 x+23$
- $y^2=24 x^6+103 x^5+112 x^4+93 x^3+55 x^2+110 x+48$
- $y^2=87 x^6+22 x^5+18 x^4+68 x^3+24 x^2+60 x+63$
- $y^2=57 x^6+36 x^5+44 x^4+42 x^3+99 x^2+74 x+80$
- $y^2=52 x^6+53 x^5+50 x^4+43 x^3+48 x^2+67 x+82$
- $y^2=90 x^6+17 x^5+21 x^4+21 x^3+96 x^2+37 x+69$
- $y^2=77 x^6+90 x^5+21 x^4+45 x^3+87 x^2+86 x+55$
- $y^2=21 x^6+2 x^5+55 x^4+27 x^3+29 x^2+18 x+50$
- and 132 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{113}$.
Endomorphism algebra over $\F_{113}$The endomorphism algebra of this simple isogeny class is 4.0.582374133.1. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.113.bb_oj | $2$ | (not in LMFDB) |