Invariants
Base field: | $\F_{113}$ |
Dimension: | $2$ |
L-polynomial: | $1 - 27 x + 371 x^{2} - 3051 x^{3} + 12769 x^{4}$ |
Frobenius angles: | $\pm0.126504360297$, $\pm0.386890610251$ |
Angle rank: | $2$ (numerical) |
Number field: | 4.0.12188349.2 |
Galois group: | $D_{4}$ |
Jacobians: | $72$ |
Isomorphism classes: | 72 |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $10063$ | $163211797$ | $2083705892599$ | $26583901099129269$ | $339453865685386014448$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $87$ | $12783$ | $1444113$ | $163044043$ | $18424195842$ | $2081952314223$ | $235260595425957$ | $26584442566567411$ | $3004041941323281459$ | $339456738983250643518$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 72 curves (of which all are hyperelliptic):
- $y^2=101 x^6+26 x^5+81 x^3+66 x^2+36 x+88$
- $y^2=108 x^6+43 x^5+104 x^4+48 x^3+78 x^2+81 x+5$
- $y^2=63 x^5+33 x^4+8 x^3+88 x^2+63 x+92$
- $y^2=27 x^6+55 x^5+91 x^4+81 x^3+x^2+61 x+103$
- $y^2=86 x^6+13 x^5+31 x^4+35 x^3+111 x^2+54 x+33$
- $y^2=43 x^6+36 x^5+68 x^4+95 x^3+89 x^2+83 x+20$
- $y^2=99 x^6+19 x^5+78 x^4+76 x^3+66 x^2+29 x+102$
- $y^2=74 x^6+77 x^5+26 x^4+56 x^3+93 x^2+78 x+35$
- $y^2=72 x^6+4 x^5+102 x^4+92 x^3+67 x^2+43 x+14$
- $y^2=39 x^6+87 x^5+68 x^4+27 x^3+43 x^2+37 x+1$
- $y^2=46 x^6+75 x^5+89 x^4+76 x^3+33 x^2+107$
- $y^2=101 x^6+70 x^5+11 x^4+79 x^3+2 x^2+88 x+67$
- $y^2=41 x^6+67 x^5+64 x^4+89 x^3+68 x^2+110 x+59$
- $y^2=85 x^6+48 x^5+75 x^4+42 x^3+49 x^2+109 x+5$
- $y^2=80 x^6+19 x^5+104 x^4+72 x^3+19 x^2+58 x+22$
- $y^2=20 x^6+90 x^5+90 x^4+112 x^3+96 x^2+63 x+78$
- $y^2=29 x^6+52 x^5+99 x^4+8 x^3+18 x^2+21 x+74$
- $y^2=86 x^6+109 x^5+21 x^4+87 x^2+51 x+40$
- $y^2=83 x^6+70 x^5+88 x^4+111 x^3+108 x^2+75 x+45$
- $y^2=93 x^6+19 x^5+105 x^4+60 x^3+73 x^2+52 x+9$
- and 52 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{113}$.
Endomorphism algebra over $\F_{113}$The endomorphism algebra of this simple isogeny class is 4.0.12188349.2. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.113.bb_oh | $2$ | (not in LMFDB) |