Invariants
Base field: | $\F_{113}$ |
Dimension: | $2$ |
L-polynomial: | $1 - 26 x + 390 x^{2} - 2938 x^{3} + 12769 x^{4}$ |
Frobenius angles: | $\pm0.245677096695$, $\pm0.331015515338$ |
Angle rank: | $2$ (numerical) |
Number field: | 4.0.1847600.2 |
Galois group: | $D_{4}$ |
Jacobians: | $72$ |
Isomorphism classes: | 96 |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $10196$ | $164400304$ | $2087773427924$ | $26590786443819776$ | $339458166042819831316$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $88$ | $12874$ | $1446928$ | $163086270$ | $18424429248$ | $2081949104458$ | $235260511838440$ | $26584441751221374$ | $3004041938711558344$ | $339456739007930520714$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 72 curves (of which all are hyperelliptic):
- $y^2=75 x^6+107 x^5+107 x^4+67 x^3+16 x^2+80 x+13$
- $y^2=65 x^6+6 x^5+20 x^4+9 x^3+77 x^2+x+3$
- $y^2=48 x^6+59 x^5+88 x^4+42 x^3+77 x^2+86 x+54$
- $y^2=11 x^6+31 x^5+63 x^4+98 x^3+11 x^2+19 x+35$
- $y^2=45 x^6+52 x^5+26 x^4+22 x^3+72 x^2+21 x+82$
- $y^2=x^6+90 x^5+18 x^4+52 x^3+72 x^2+x+60$
- $y^2=82 x^6+55 x^5+94 x^4+99 x^3+47 x^2+32 x+71$
- $y^2=32 x^6+12 x^5+2 x^4+16 x^3+93 x^2+68 x+46$
- $y^2=39 x^6+44 x^5+8 x^4+100 x^3+14 x^2+76 x+25$
- $y^2=45 x^6+66 x^5+111 x^4+78 x^3+34 x^2+101 x+94$
- $y^2=17 x^6+79 x^5+88 x^4+79 x^3+16 x^2+9 x+65$
- $y^2=21 x^6+60 x^5+55 x^4+72 x^3+76 x^2+49 x+31$
- $y^2=44 x^6+67 x^5+41 x^4+106 x^3+9 x^2+x+74$
- $y^2=43 x^6+65 x^5+102 x^4+95 x^3+53 x^2+65 x+72$
- $y^2=4 x^6+27 x^5+94 x^4+33 x^3+97 x^2+23$
- $y^2=76 x^6+60 x^5+26 x^4+90 x^3+79 x^2+35 x+110$
- $y^2=92 x^6+35 x^5+80 x^4+73 x^3+68 x^2+100 x+108$
- $y^2=73 x^6+34 x^5+77 x^4+51 x^3+89 x^2+105 x+88$
- $y^2=75 x^6+16 x^5+83 x^4+35 x^3+x^2+77 x+46$
- $y^2=68 x^6+81 x^5+65 x^4+29 x^3+48 x^2+92 x+69$
- and 52 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{113}$.
Endomorphism algebra over $\F_{113}$The endomorphism algebra of this simple isogeny class is 4.0.1847600.2. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.113.ba_pa | $2$ | (not in LMFDB) |