Invariants
Base field: | $\F_{113}$ |
Dimension: | $2$ |
L-polynomial: | $1 - 26 x + 385 x^{2} - 2938 x^{3} + 12769 x^{4}$ |
Frobenius angles: | $\pm0.225096229457$, $\pm0.346870828388$ |
Angle rank: | $2$ (numerical) |
Number field: | 4.0.108430400.1 |
Galois group: | $D_{4}$ |
Jacobians: | $60$ |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $10191$ | $164268729$ | $2087209782684$ | $26589845533441401$ | $339457998361520742591$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $88$ | $12864$ | $1446538$ | $163080500$ | $18424420148$ | $2081950265718$ | $235260533949620$ | $26584441912727524$ | $3004041937744861834$ | $339456738969861846864$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 60 curves (of which all are hyperelliptic):
- $y^2=63 x^6+8 x^5+97 x^4+85 x^3+30 x^2+85 x+24$
- $y^2=47 x^6+100 x^5+46 x^4+8 x^3+96 x^2+9 x+100$
- $y^2=45 x^6+55 x^5+65 x^4+86 x^3+47 x^2+8 x+107$
- $y^2=42 x^6+5 x^5+42 x^4+55 x^3+49 x^2+15 x+102$
- $y^2=12 x^6+27 x^5+98 x^4+40 x^3+27 x^2+87 x+83$
- $y^2=93 x^6+94 x^5+33 x^4+42 x^3+98 x^2+70 x+79$
- $y^2=36 x^6+94 x^5+12 x^4+9 x^3+59 x^2+94$
- $y^2=105 x^6+71 x^5+14 x^4+35 x^3+5 x^2+76 x+74$
- $y^2=65 x^6+68 x^5+29 x^4+80 x^3+80 x^2+105 x+107$
- $y^2=95 x^6+7 x^5+3 x^4+11 x^3+57 x^2+23 x+105$
- $y^2=72 x^6+10 x^5+109 x^4+93 x^3+93 x^2+73 x+86$
- $y^2=18 x^6+86 x^5+47 x^4+84 x^3+40 x^2+13 x+88$
- $y^2=76 x^6+98 x^5+84 x^4+69 x^3+65 x^2+42 x+27$
- $y^2=38 x^6+88 x^5+87 x^4+22 x^3+36 x^2+106 x+37$
- $y^2=106 x^6+16 x^5+53 x^4+28 x^3+89 x^2+42 x+55$
- $y^2=59 x^6+14 x^5+92 x^4+26 x^3+47 x^2+102 x+67$
- $y^2=38 x^6+5 x^5+6 x^4+35 x^3+96 x^2+33 x+9$
- $y^2=8 x^6+3 x^5+88 x^4+51 x^3+81 x^2+88 x+84$
- $y^2=112 x^6+8 x^5+69 x^4+72 x^3+66 x^2+103 x+19$
- $y^2=15 x^6+96 x^5+86 x^4+111 x^3+48 x^2+91 x+95$
- and 40 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{113}$.
Endomorphism algebra over $\F_{113}$The endomorphism algebra of this simple isogeny class is 4.0.108430400.1. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.113.ba_ov | $2$ | (not in LMFDB) |