Properties

Label 2.11.d_h
Base field $\F_{11}$
Dimension $2$
$p$-rank $2$
Ordinary yes
Supersingular no
Simple yes
Geometrically simple yes
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{11}$
Dimension:  $2$
L-polynomial:  $1 + 3 x + 7 x^{2} + 33 x^{3} + 121 x^{4}$
Frobenius angles:  $\pm0.369009486075$, $\pm0.824773918070$
Angle rank:  $2$ (numerical)
Number field:  4.0.2118645.1
Galois group:  $D_{4}$
Jacobians:  $14$

This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $2$
Slopes:  $[0, 0, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $165$ $15345$ $1857735$ $216748125$ $25704426000$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $15$ $127$ $1395$ $14803$ $159600$ $1772107$ $19482765$ $214396723$ $2358022725$ $25937014102$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 14 curves (of which all are hyperelliptic):

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{11}$.

Endomorphism algebra over $\F_{11}$
The endomorphism algebra of this simple isogeny class is 4.0.2118645.1.

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
2.11.ad_h$2$2.121.f_dp