Invariants
| Base field: | $\F_{11}$ |
| Dimension: | $2$ |
| L-polynomial: | $( 1 - 2 x + 11 x^{2} )( 1 + 3 x + 11 x^{2} )$ |
| $1 + x + 16 x^{2} + 11 x^{3} + 121 x^{4}$ | |
| Frobenius angles: | $\pm0.402508885479$, $\pm0.649384592723$ |
| Angle rank: | $2$ (numerical) |
| Jacobians: | $10$ |
| Isomorphism classes: | 52 |
| Cyclic group of points: | no |
| Non-cyclic primes: | $5$ |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $150$ | $18900$ | $1751400$ | $214250400$ | $25900406250$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $13$ | $153$ | $1318$ | $14633$ | $160823$ | $1768338$ | $19495853$ | $214405393$ | $2357825458$ | $25937097273$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 10 curves (of which all are hyperelliptic):
- $y^2=3 x^6+8 x^5+6 x^4+9 x^2+4 x+4$
- $y^2=7 x^6+2 x^5+9 x^4+10 x^3+10 x^2+9 x+7$
- $y^2=5 x^6+x^5+7 x^4+8 x^3+3 x^2+8 x+2$
- $y^2=4 x^6+5 x^5+8 x^4+2 x^3+10 x^2+8 x+3$
- $y^2=6 x^6+7 x^5+7 x^4+9 x^3+9 x^2+2 x$
- $y^2=6 x^6+2 x^5+2 x^4+x^2+x+8$
- $y^2=9 x^6+10 x^5+4 x^4+5 x^3+2 x^2+3 x+7$
- $y^2=5 x^6+8 x^5+7 x^4+6 x^3+6 x^2+8 x+1$
- $y^2=5 x^6+2 x^5+x^4+6 x^3+8 x^2+7 x+2$
- $y^2=4 x^6+x^5+4 x^4+9 x^3+4 x^2+5 x+5$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{11}$.
Endomorphism algebra over $\F_{11}$| The isogeny class factors as 1.11.ac $\times$ 1.11.d and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is: |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change |
|---|---|---|
| 2.11.af_bc | $2$ | 2.121.bf_si |
| 2.11.ab_q | $2$ | 2.121.bf_si |
| 2.11.f_bc | $2$ | 2.121.bf_si |