Properties

Label 2.11.b_h
Base field $\F_{11}$
Dimension $2$
$p$-rank $2$
Ordinary yes
Supersingular no
Simple yes
Geometrically simple yes
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{11}$
Dimension:  $2$
L-polynomial:  $1 + x + 7 x^{2} + 11 x^{3} + 121 x^{4}$
Frobenius angles:  $\pm0.328407286198$, $\pm0.731184053231$
Angle rank:  $2$ (numerical)
Number field:  4.0.2965637.1
Galois group:  $D_{4}$
Jacobians:  $13$
Isomorphism classes:  13

This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $2$
Slopes:  $[0, 0, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $141$ $16497$ $1787175$ $219822525$ $25821275856$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $13$ $135$ $1345$ $15011$ $160328$ $1767987$ $19490183$ $214344211$ $2358068215$ $25937806230$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 13 curves (of which all are hyperelliptic):

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{11}$.

Endomorphism algebra over $\F_{11}$
The endomorphism algebra of this simple isogeny class is 4.0.2965637.1.

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
2.11.ab_h$2$2.121.n_kj