Invariants
| Base field: | $\F_{109}$ |
| Dimension: | $2$ |
| L-polynomial: | $( 1 - 18 x + 109 x^{2} )^{2}$ |
| $1 - 36 x + 542 x^{2} - 3924 x^{3} + 11881 x^{4}$ | |
| Frobenius angles: | $\pm0.169184306747$, $\pm0.169184306747$ |
| Angle rank: | $1$ (numerical) |
| Jacobians: | $20$ |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $8464$ | $138674176$ | $1677242567056$ | $19929163150393344$ | $236743124620706193424$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $74$ | $11670$ | $1295138$ | $141183214$ | $15386678714$ | $1677105285126$ | $182803957349906$ | $19925626667733214$ | $2171893279023034922$ | $236736367424324172150$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 20 curves (of which all are hyperelliptic):
- $y^2=94 x^6+11 x^5+44 x^4+28 x^3+44 x^2+11 x+94$
- $y^2=52 x^6+6 x^4+6 x^2+52$
- $y^2=13 x^6+18 x^5+x^4+96 x^3+x^2+18 x+13$
- $y^2=92 x^6+26 x^5+10 x^4+9 x^3+103 x^2+5 x+90$
- $y^2=23 x^6+26 x^5+82 x^4+52 x^3+82 x^2+26 x+23$
- $y^2=101 x^6+35 x^5+76 x^4+58 x^3+76 x^2+35 x+101$
- $y^2=14 x^6+105 x^5+46 x^4+100 x^3+46 x^2+105 x+14$
- $y^2=4 x^6+97 x^4+97 x^2+4$
- $y^2=48 x^6+54 x^5+28 x^4+34 x^3+76 x^2+43 x+30$
- $y^2=67 x^6+73 x^5+27 x^4+45 x^3+5 x^2+97 x+62$
- $y^2=107 x^6+69 x^5+17 x^4+68 x^3+101 x^2+52 x+12$
- $y^2=11 x^6+62 x^4+62 x^2+11$
- $y^2=10 x^6+20 x^5+32 x^4+67 x^3+32 x^2+20 x+10$
- $y^2=7 x^6+82 x^4+82 x^2+7$
- $y^2=94 x^6+85 x^5+79 x^4+75 x^3+79 x^2+85 x+94$
- $y^2=54 x^6+85 x^5+2 x^4+103 x^3+91 x^2+104 x+69$
- $y^2=16 x^6+23 x^5+48 x^4+60 x^3+96 x^2+27 x+89$
- $y^2=47 x^6+102 x^5+17 x^4+94 x^3+17 x^2+102 x+47$
- $y^2=92 x^6+40 x^5+26 x^4+9 x^3+28 x^2+73 x+96$
- $y^2=47 x^6+51 x^5+71 x^4+36 x^3+11 x^2+4 x+56$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{109}$.
Endomorphism algebra over $\F_{109}$| The isogeny class factors as 1.109.as 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-7}) \)$)$ |
Base change
This is a primitive isogeny class.