Properties

Label 2.109.abk_uw
Base field $\F_{109}$
Dimension $2$
$p$-rank $2$
Ordinary yes
Supersingular no
Simple no
Geometrically simple no
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{109}$
Dimension:  $2$
L-polynomial:  $( 1 - 18 x + 109 x^{2} )^{2}$
  $1 - 36 x + 542 x^{2} - 3924 x^{3} + 11881 x^{4}$
Frobenius angles:  $\pm0.169184306747$, $\pm0.169184306747$
Angle rank:  $1$ (numerical)
Jacobians:  $20$

This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $2$
Slopes:  $[0, 0, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $8464$ $138674176$ $1677242567056$ $19929163150393344$ $236743124620706193424$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $74$ $11670$ $1295138$ $141183214$ $15386678714$ $1677105285126$ $182803957349906$ $19925626667733214$ $2171893279023034922$ $236736367424324172150$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 20 curves (of which all are hyperelliptic):

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{109}$.

Endomorphism algebra over $\F_{109}$
The isogeny class factors as 1.109.as 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-7}) \)$)$

Base change

This is a primitive isogeny class.

Twists

Below are some of the twists of this isogeny class.

TwistExtension degreeCommon base change
2.109.a_aec$2$(not in LMFDB)
2.109.bk_uw$2$(not in LMFDB)
2.109.s_ih$3$(not in LMFDB)

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
2.109.a_aec$2$(not in LMFDB)
2.109.bk_uw$2$(not in LMFDB)
2.109.s_ih$3$(not in LMFDB)
2.109.a_ec$4$(not in LMFDB)
2.109.as_ih$6$(not in LMFDB)