Invariants
| Base field: | $\F_{109}$ |
| Dimension: | $2$ |
| L-polynomial: | $( 1 - 19 x + 109 x^{2} )( 1 - 15 x + 109 x^{2} )$ |
| $1 - 34 x + 503 x^{2} - 3706 x^{3} + 11881 x^{4}$ | |
| Frobenius angles: | $\pm0.136131296974$, $\pm0.244888641568$ |
| Angle rank: | $2$ (numerical) |
| Jacobians: | $42$ |
| Isomorphism classes: | 72 |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $8645$ | $139400625$ | $1678246519040$ | $19929441718265625$ | $236741326284779040725$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $76$ | $11732$ | $1295914$ | $141185188$ | $15386561836$ | $1677102532742$ | $182803921971964$ | $19925626408252228$ | $2171893279319883346$ | $236736367467278869652$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 42 curves (of which all are hyperelliptic):
- $y^2=28 x^6+34 x^5+91 x^4+67 x^3+51 x^2+61 x+3$
- $y^2=73 x^6+58 x^5+32 x^4+51 x^3+3 x^2+93 x+65$
- $y^2=29 x^6+7 x^5+63 x^4+72 x^3+103 x^2+8 x+101$
- $y^2=37 x^6+39 x^5+82 x^4+80 x^3+48 x^2+95 x+91$
- $y^2=40 x^6+97 x^5+62 x^4+8 x^3+92 x^2+76 x+107$
- $y^2=92 x^6+64 x^5+52 x^4+8 x^3+3 x^2+17 x+41$
- $y^2=95 x^6+76 x^5+54 x^4+86 x^3+65 x^2+53 x+53$
- $y^2=31 x^6+43 x^5+105 x^4+38 x^3+20 x^2+71 x+58$
- $y^2=63 x^6+45 x^5+13 x^4+92 x^3+90 x^2+80 x+4$
- $y^2=66 x^6+x^5+22 x^4+42 x^3+80 x^2+97 x+39$
- $y^2=6 x^6+51 x^5+84 x^4+101 x^3+89 x^2+37 x+24$
- $y^2=12 x^6+90 x^5+90 x^4+76 x^3+107 x^2+105 x+13$
- $y^2=55 x^6+60 x^5+24 x^4+64 x^3+56 x^2+66 x+70$
- $y^2=14 x^6+59 x^5+7 x^4+57 x^3+79 x^2+58 x+105$
- $y^2=74 x^6+19 x^5+38 x^4+108 x^3+12 x^2+65 x+73$
- $y^2=14 x^6+20 x^5+76 x^4+14 x^3+17 x^2+37 x+79$
- $y^2=57 x^6+8 x^5+108 x^4+81 x^3+63 x^2+60 x+16$
- $y^2=72 x^6+99 x^5+7 x^4+28 x^3+7 x^2+99 x+72$
- $y^2=103 x^6+46 x^5+39 x^4+30 x^3+107 x^2+94 x+40$
- $y^2=17 x^6+93 x^5+15 x^4+49 x^3+83 x^2+12 x+33$
- and 22 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{109}$.
Endomorphism algebra over $\F_{109}$| The isogeny class factors as 1.109.at $\times$ 1.109.ap and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is: |
Base change
This is a primitive isogeny class.