Properties

Label 2.109.abi_td
Base field $\F_{109}$
Dimension $2$
$p$-rank $2$
Ordinary yes
Supersingular no
Simple yes
Geometrically simple yes
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{109}$
Dimension:  $2$
L-polynomial:  $1 - 34 x + 497 x^{2} - 3706 x^{3} + 11881 x^{4}$
Frobenius angles:  $\pm0.0837355935881$, $\pm0.269407611197$
Angle rank:  $2$ (numerical)
Number field:  4.0.142400.3
Galois group:  $D_{4}$
Jacobians:  $18$
Isomorphism classes:  36

This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $2$
Slopes:  $[0, 0, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $8639$ $139252041$ $1677451942556$ $19927218974042169$ $236737167351843864599$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $76$ $11720$ $1295302$ $141169444$ $15386291536$ $1677099203966$ $182803893990304$ $19925626311131524$ $2171893280858996638$ $236736367503674969000$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 18 curves (of which all are hyperelliptic):

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{109}$.

Endomorphism algebra over $\F_{109}$
The endomorphism algebra of this simple isogeny class is 4.0.142400.3.

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
2.109.bi_td$2$(not in LMFDB)