Properties

Label 2.1024.aes_inv
Base field $\F_{2^{10}}$
Dimension $2$
$p$-rank $2$
Ordinary yes
Supersingular no
Simple yes
Geometrically simple yes
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{2^{10}}$
Dimension:  $2$
L-polynomial:  $1 - 122 x + 5767 x^{2} - 124928 x^{3} + 1048576 x^{4}$
Frobenius angles:  $\pm0.0710065369012$, $\pm0.118913228236$
Angle rank:  $2$ (numerical)
Number field:  4.0.6999104.2
Galois group:  $D_{4}$

This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $2$
Slopes:  $[0, 0, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $929294$ $1096003767836$ $1152835705510503602$ $1208924196207911922915296$ $1267650589112939617298113203774$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $903$ $1045227$ $1073661915$ $1099510151295$ $1125899896970263$ $1152921505447023627$ $1180591620776184531243$ $1208925819617269078909119$ $1237940039285478711517444455$ $1267650600228232647869333803627$

Jacobians and polarizations

This isogeny class contains a Jacobian and hence is principally polarizable.

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{2^{10}}$.

Endomorphism algebra over $\F_{2^{10}}$
The endomorphism algebra of this simple isogeny class is 4.0.6999104.2.

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
2.1024.es_inv$2$(not in LMFDB)