Invariants
| Base field: | $\F_{2^{10}}$ |
| Dimension: | $2$ |
| L-polynomial: | $1 - 120 x + 5641 x^{2} - 122880 x^{3} + 1048576 x^{4}$ |
| Frobenius angles: | $\pm0.0655983852739$, $\pm0.146345352353$ |
| Angle rank: | $2$ (numerical) |
| Number field: | 4.0.12049296.1 |
| Galois group: | $D_{4}$ |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $931218$ | $1096246591524$ | $1152850769309131650$ | $1208924864956269785608704$ | $1267650611630668828237348052178$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $905$ | $1045459$ | $1073675945$ | $1099510759519$ | $1125899916970025$ | $1152921505894103923$ | $1180591620777142117385$ | $1208925819616690345361599$ | $1237940039285438232641168585$ | $1267650600228230719297761288979$ |
Jacobians and polarizations
This isogeny class contains a Jacobian and hence is principally polarizable.
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{2^{10}}$.
Endomorphism algebra over $\F_{2^{10}}$| The endomorphism algebra of this simple isogeny class is 4.0.12049296.1. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change |
|---|---|---|
| 2.1024.eq_iiz | $2$ | (not in LMFDB) |