Properties

Label 2.1024.aeq_iiz
Base field $\F_{2^{10}}$
Dimension $2$
$p$-rank $2$
Ordinary yes
Supersingular no
Simple yes
Geometrically simple yes
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{2^{10}}$
Dimension:  $2$
L-polynomial:  $1 - 120 x + 5641 x^{2} - 122880 x^{3} + 1048576 x^{4}$
Frobenius angles:  $\pm0.0655983852739$, $\pm0.146345352353$
Angle rank:  $2$ (numerical)
Number field:  4.0.12049296.1
Galois group:  $D_{4}$

This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $2$
Slopes:  $[0, 0, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $931218$ $1096246591524$ $1152850769309131650$ $1208924864956269785608704$ $1267650611630668828237348052178$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $905$ $1045459$ $1073675945$ $1099510759519$ $1125899916970025$ $1152921505894103923$ $1180591620777142117385$ $1208925819616690345361599$ $1237940039285438232641168585$ $1267650600228230719297761288979$

Jacobians and polarizations

This isogeny class contains a Jacobian and hence is principally polarizable.

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{2^{10}}$.

Endomorphism algebra over $\F_{2^{10}}$
The endomorphism algebra of this simple isogeny class is 4.0.12049296.1.

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
2.1024.eq_iiz$2$(not in LMFDB)