Properties

Label 2.1024.aeo_idt
Base field $\F_{2^{10}}$
Dimension $2$
$p$-rank $2$
Ordinary yes
Supersingular no
Simple yes
Geometrically simple yes
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{2^{10}}$
Dimension:  $2$
L-polynomial:  $1 - 118 x + 5505 x^{2} - 120832 x^{3} + 1048576 x^{4}$
Frobenius angles:  $\pm0.0178869819368$, $\pm0.179404760049$
Angle rank:  $2$ (numerical)
Number field:  4.0.8700480.3
Galois group:  $D_{4}$

This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $2$
Slopes:  $[0, 0, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $933132$ $1096459960224$ $1152860562808730316$ $1208925028245024039803520$ $1267650599271530133712274072652$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $907$ $1045663$ $1073685067$ $1099510908031$ $1125899905992907$ $1152921504666149791$ $1180591620701633461003$ $1208925819613092962565631$ $1237940039285293915560595723$ $1267650600228225699290827519903$

Jacobians and polarizations

This isogeny class contains a Jacobian and hence is principally polarizable.

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{2^{10}}$.

Endomorphism algebra over $\F_{2^{10}}$
The endomorphism algebra of this simple isogeny class is 4.0.8700480.3.

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
2.1024.eo_idt$2$(not in LMFDB)