Invariants
| Base field: | $\F_{2^{10}}$ |
| Dimension: | $2$ |
| L-polynomial: | $1 - 118 x + 5505 x^{2} - 120832 x^{3} + 1048576 x^{4}$ |
| Frobenius angles: | $\pm0.0178869819368$, $\pm0.179404760049$ |
| Angle rank: | $2$ (numerical) |
| Number field: | 4.0.8700480.3 |
| Galois group: | $D_{4}$ |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $933132$ | $1096459960224$ | $1152860562808730316$ | $1208925028245024039803520$ | $1267650599271530133712274072652$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $907$ | $1045663$ | $1073685067$ | $1099510908031$ | $1125899905992907$ | $1152921504666149791$ | $1180591620701633461003$ | $1208925819613092962565631$ | $1237940039285293915560595723$ | $1267650600228225699290827519903$ |
Jacobians and polarizations
This isogeny class contains a Jacobian and hence is principally polarizable.
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{2^{10}}$.
Endomorphism algebra over $\F_{2^{10}}$| The endomorphism algebra of this simple isogeny class is 4.0.8700480.3. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change |
|---|---|---|
| 2.1024.eo_idt | $2$ | (not in LMFDB) |