Properties

Label 2.101.abl_uy
Base field $\F_{101}$
Dimension $2$
$p$-rank $2$
Ordinary yes
Supersingular no
Simple no
Geometrically simple no
Primitive yes
Principally polarizable yes
Contains a Jacobian no

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{101}$
Dimension:  $2$
L-polynomial:  $( 1 - 19 x + 101 x^{2} )( 1 - 18 x + 101 x^{2} )$
  $1 - 37 x + 544 x^{2} - 3737 x^{3} + 10201 x^{4}$
Frobenius angles:  $\pm0.105783363728$, $\pm0.146794250513$
Angle rank:  $2$ (numerical)
Jacobians:  $0$

This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $2$
Slopes:  $[0, 0, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $6972$ $101233440$ $1059997780800$ $10828633732076160$ $110463853222916990412$

Point counts of the (virtual) curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $65$ $9921$ $1028822$ $104061041$ $10510256605$ $1061522914518$ $107213570040985$ $10828567418269441$ $1093685275866613982$ $110462212563908055801$

Jacobians and polarizations

This isogeny class is principally polarizable, but does not contain a Jacobian.

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{101}$.

Endomorphism algebra over $\F_{101}$
The isogeny class factors as 1.101.at $\times$ 1.101.as and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is:

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
2.101.ab_afk$2$(not in LMFDB)
2.101.b_afk$2$(not in LMFDB)
2.101.bl_uy$2$(not in LMFDB)