Properties

Label 2.101.abg_rh
Base field $\F_{101}$
Dimension $2$
$p$-rank $2$
Ordinary yes
Supersingular no
Simple no
Geometrically simple no
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{101}$
Dimension:  $2$
L-polynomial:  $( 1 - 19 x + 101 x^{2} )( 1 - 13 x + 101 x^{2} )$
  $1 - 32 x + 449 x^{2} - 3232 x^{3} + 10201 x^{4}$
Frobenius angles:  $\pm0.105783363728$, $\pm0.276117624376$
Angle rank:  $2$ (numerical)
Jacobians:  $22$

This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $2$
Slopes:  $[0, 0, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $7387$ $102790105$ $1062179684800$ $10830069178015945$ $110463197654237940787$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $70$ $10076$ $1030942$ $104074836$ $10510194230$ $1061520022838$ $107213529160430$ $10828567075725796$ $1093685274654120262$ $110462212577170789676$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 22 curves (of which all are hyperelliptic):

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{101}$.

Endomorphism algebra over $\F_{101}$
The isogeny class factors as 1.101.at $\times$ 1.101.an and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is:

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
2.101.ag_abt$2$(not in LMFDB)
2.101.g_abt$2$(not in LMFDB)
2.101.bg_rh$2$(not in LMFDB)