Invariants
| Base field: | $\F_{101}$ |
| Dimension: | $2$ |
| L-polynomial: | $( 1 - 19 x + 101 x^{2} )( 1 - 13 x + 101 x^{2} )$ |
| $1 - 32 x + 449 x^{2} - 3232 x^{3} + 10201 x^{4}$ | |
| Frobenius angles: | $\pm0.105783363728$, $\pm0.276117624376$ |
| Angle rank: | $2$ (numerical) |
| Jacobians: | $22$ |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $7387$ | $102790105$ | $1062179684800$ | $10830069178015945$ | $110463197654237940787$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $70$ | $10076$ | $1030942$ | $104074836$ | $10510194230$ | $1061520022838$ | $107213529160430$ | $10828567075725796$ | $1093685274654120262$ | $110462212577170789676$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 22 curves (of which all are hyperelliptic):
- $y^2=31 x^6+16 x^5+17 x^4+34 x^3+2 x^2+80 x+72$
- $y^2=3 x^6+49 x^5+50 x^4+90 x^3+15 x^2+80 x+77$
- $y^2=75 x^6+13 x^5+72 x^4+75 x^3+52 x+43$
- $y^2=7 x^6+100 x^5+66 x^4+75 x^3+26 x^2+44 x+90$
- $y^2=12 x^6+55 x^5+20 x^4+88 x^3+20 x^2+55 x+12$
- $y^2=87 x^6+90 x^5+32 x^4+97 x^3+81 x^2+86 x+30$
- $y^2=8 x^6+80 x^5+96 x^4+65 x^3+37 x^2+8 x+34$
- $y^2=8 x^6+66 x^5+20 x^4+9 x^3+15 x^2+60 x+63$
- $y^2=40 x^6+45 x^5+95 x^4+22 x^3+95 x^2+45 x+40$
- $y^2=44 x^6+96 x^5+24 x^4+5 x^3+83 x^2+19 x+12$
- $y^2=91 x^6+57 x^5+49 x^4+93 x^3+45 x^2+62 x+64$
- $y^2=29 x^6+38 x^5+21 x^4+67 x^3+21 x^2+38 x+29$
- $y^2=58 x^6+5 x^5+64 x^4+49 x^3+54 x^2+33 x+74$
- $y^2=47 x^6+14 x^5+31 x^4+100 x^3+46 x^2+64 x+51$
- $y^2=48 x^6+43 x^5+15 x^4+11 x^3+15 x^2+43 x+48$
- $y^2=77 x^6+10 x^5+54 x^4+68 x^3+72 x^2+x+90$
- $y^2=91 x^6+2 x^5+69 x^4+3 x^3+69 x^2+2 x+91$
- $y^2=37 x^6+12 x^5+80 x^4+9 x^3+51 x^2+81 x+1$
- $y^2=46 x^6+87 x^5+23 x^4+28 x^3+67 x^2+7 x+61$
- $y^2=28 x^6+43 x^5+24 x^4+27 x^3+67 x^2+91 x+97$
- $y^2=x^6+87 x^5+28 x^4+88 x^3+78 x^2+45 x+72$
- $y^2=89 x^6+78 x^5+83 x^4+88 x^3+83 x^2+78 x+89$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{101}$.
Endomorphism algebra over $\F_{101}$| The isogeny class factors as 1.101.at $\times$ 1.101.an and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is: |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change |
|---|---|---|
| 2.101.ag_abt | $2$ | (not in LMFDB) |
| 2.101.g_abt | $2$ | (not in LMFDB) |
| 2.101.bg_rh | $2$ | (not in LMFDB) |