Properties

Label 1.67.ap
Base field $\F_{67}$
Dimension $1$
$p$-rank $1$
Ordinary yes
Supersingular no
Simple yes
Geometrically simple yes
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{67}$
Dimension:  $1$
L-polynomial:  $1 - 15 x + 67 x^{2}$
Frobenius angles:  $\pm0.131184157393$
Angle rank:  $1$ (numerical)
Number field:  \(\Q(\sqrt{-43}) \)
Galois group:  $C_2$
Jacobians:  $1$
Isomorphism classes:  1

This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $1$
Slopes:  $[0, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $53$ $4399$ $300404$ $20151819$ $1350159683$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $53$ $4399$ $300404$ $20151819$ $1350159683$ $90458854096$ $6060716367689$ $406067717373075$ $27206534674462988$ $1822837806056581039$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobian of 1 curve (which is not hyperelliptic):

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{67}$.

Endomorphism algebra over $\F_{67}$
The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-43}) \).

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
1.67.p$2$(not in LMFDB)