Invariants
Base field: | $\F_{31}$ |
Dimension: | $1$ |
L-polynomial: | $1 - 4 x + 31 x^{2}$ |
Frobenius angles: | $\pm0.383045975359$ |
Angle rank: | $1$ (numerical) |
Number field: | \(\Q(\sqrt{-3}) \) |
Galois group: | $C_2$ |
Jacobians: | $6$ |
Isomorphism classes: | 6 |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $1$ |
Slopes: | $[0, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $28$ | $1008$ | $30100$ | $923328$ | $28618828$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $28$ | $1008$ | $30100$ | $923328$ | $28618828$ | $887468400$ | $27512793028$ | $852892846848$ | $26439623851900$ | $819628237654128$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 6 curves (of which 0 are hyperelliptic):
- $y^2=x^3+15 x+15$
- $y^2=x^3+15$
- $y^2=x^3+5 x+5$
- $y^2=x^3+7 x+21$
- $y^2=x^3+16 x+17$
- $y^2=x^3+10 x+10$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{31}$.
Endomorphism algebra over $\F_{31}$The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-3}) \). |
Base change
This is a primitive isogeny class.