Invariants
| Base field: | $\F_{2^{8}}$ |
| Dimension: | $1$ |
| L-polynomial: | $( 1 - 16 x )^{2}$ |
| $1 - 32 x + 256 x^{2}$ | |
| Frobenius angles: | $0$, $0$ |
| Angle rank: | $0$ (numerical) |
| Number field: | \(\Q\) |
| Galois group: | Trivial |
| Jacobians: | $1$ |
| Isomorphism classes: | 1 |
This isogeny class is simple and geometrically simple, not primitive, not ordinary, and supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is supersingular.
| $p$-rank: | $0$ |
| Slopes: | $[1/2, 1/2]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $225$ | $65025$ | $16769025$ | $4294836225$ | $1099509530625$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $225$ | $65025$ | $16769025$ | $4294836225$ | $1099509530625$ | $281474943156225$ | $72057593501057025$ | $18446744065119617025$ | $4722366482732206260225$ | $1208925819612430151450625$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobian of 1 curve (which is not hyperelliptic):
- $y^2+y=x^3$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{2^{8}}$.
Endomorphism algebra over $\F_{2^{8}}$| The endomorphism algebra of this simple isogeny class is the quaternion algebra over \(\Q\) ramified at $2$ and $\infty$. |
Base change
This isogeny class is not primitive. It is a base change from the following isogeny classes over subfields of $\F_{2^{8}}$.
| Subfield | Primitive Model |
| $\F_{2}$ | 1.2.ac |
| $\F_{2}$ | 1.2.a |
| $\F_{2}$ | 1.2.c |
| $\F_{2^{2}}$ | 1.4.ae |