Properties

Label 1.167.au
Base field $\F_{167}$
Dimension $1$
$p$-rank $1$
Ordinary yes
Supersingular no
Simple yes
Geometrically simple yes
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{167}$
Dimension:  $1$
L-polynomial:  $1 - 20 x + 167 x^{2}$
Frobenius angles:  $\pm0.218341865198$
Angle rank:  $1$ (numerical)
Number field:  \(\Q(\sqrt{-67}) \)
Galois group:  $C_2$
Jacobians:  $4$
Isomorphism classes:  4

This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $1$
Slopes:  $[0, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $148$ $27824$ $4659484$ $777847744$ $129892676708$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $148$ $27824$ $4659484$ $777847744$ $129892676708$ $21691966830896$ $3622557575870444$ $604967115872505600$ $101029508512527734068$ $16871927924711259919664$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 4 curves (of which 0 are hyperelliptic):

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{167}$.

Endomorphism algebra over $\F_{167}$
The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-67}) \).

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
1.167.u$2$(not in LMFDB)