Invariants
| Base field: | $\F_{151}$ |
| Dimension: | $1$ |
| L-polynomial: | $1 - 20 x + 151 x^{2}$ |
| Frobenius angles: | $\pm0.197401427848$ |
| Angle rank: | $1$ (numerical) |
| Number field: | \(\Q(\sqrt{-51}) \) |
| Galois group: | $C_2$ |
| Jacobians: | $8$ |
| Isomorphism classes: | 8 |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $1$ |
| Slopes: | $[0, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $132$ | $22704$ | $3444012$ | $519921600$ | $78503285652$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $132$ | $22704$ | $3444012$ | $519921600$ | $78503285652$ | $11853917350704$ | $1789940680549692$ | $270281037871046400$ | $40812436747439243172$ | $6162677950180235955504$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 8 curves (of which 0 are hyperelliptic):
- $y^2=x^3+68 x+68$
- $y^2=x^3+20 x+60$
- $y^2=x^3+117 x+117$
- $y^2=x^3+99 x+99$
- $y^2=x^3+51 x+2$
- $y^2=x^3+5 x+15$
- $y^2=x^3+73 x+73$
- $y^2=x^3+55 x+55$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{151}$.
Endomorphism algebra over $\F_{151}$| The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-51}) \). |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change |
|---|---|---|
| 1.151.u | $2$ | (not in LMFDB) |