Invariants
| Base field: | $\F_{137}$ |
| Dimension: | $1$ |
| L-polynomial: | $1 - 17 x + 137 x^{2}$ |
| Frobenius angles: | $\pm0.241282780251$ |
| Angle rank: | $1$ (numerical) |
| Number field: | \(\Q(\sqrt{-259}) \) |
| Galois group: | $C_2$ |
| Jacobians: | $4$ |
| Isomorphism classes: | 4 |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $1$ |
| Slopes: | $[0, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $121$ | $18755$ | $2573428$ | $352312675$ | $48262074641$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $121$ | $18755$ | $2573428$ | $352312675$ | $48262074641$ | $6611857091840$ | $905824272659273$ | $124097929279971075$ | $17001416398494506836$ | $2329194047537287260275$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 4 curves (of which 0 are hyperelliptic):
- $y^2=x^3+114 x+114$
- $y^2=x^3+134 x+134$
- $y^2=x^3+98 x+98$
- $y^2=x^3+61 x+46$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{137}$.
Endomorphism algebra over $\F_{137}$| The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-259}) \). |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change |
|---|---|---|
| 1.137.r | $2$ | (not in LMFDB) |