Invariants
Base field: | $\F_{113}$ |
Dimension: | $1$ |
L-polynomial: | $1 - 4 x + 113 x^{2}$ |
Frobenius angles: | $\pm0.439752777404$ |
Angle rank: | $1$ (numerical) |
Number field: | \(\Q(\sqrt{-109}) \) |
Galois group: | $C_2$ |
Jacobians: | $6$ |
Isomorphism classes: | 6 |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $1$ |
Slopes: | $[0, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $110$ | $12980$ | $1444190$ | $163028800$ | $18424131550$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $110$ | $12980$ | $1444190$ | $163028800$ | $18424131550$ | $2081952969140$ | $235260577798510$ | $26584441910611200$ | $3004041934548288590$ | $339456738980563598900$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 6 curves (of which 0 are hyperelliptic):
- $y^2=x^3+66 x+85$
- $y^2=x^3+21 x+63$
- $y^2=x^3+61 x+61$
- $y^2=x^3+72 x+103$
- $y^2=x^3+69 x+94$
- $y^2=x^3+61 x+70$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{113}$.
Endomorphism algebra over $\F_{113}$The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-109}) \). |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
1.113.e | $2$ | (not in LMFDB) |