Invariants
| Base field: | $\F_{109}$ | 
| Dimension: | $1$ | 
| L-polynomial: | $1 - 14 x + 109 x^{2}$ | 
| Frobenius angles: | $\pm0.266088896335$ | 
| Angle rank: | $1$ (numerical) | 
| Number field: | \(\Q(\sqrt{-15}) \) | 
| Galois group: | $C_2$ | 
| Jacobians: | $8$ | 
| Isomorphism classes: | 8 | 
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $1$ | 
| Slopes: | $[0, 1]$ | 
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | 
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $96$ | $11904$ | $1296864$ | $141181440$ | $15386365536$ | 
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ | 
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $96$ | $11904$ | $1296864$ | $141181440$ | $15386365536$ | $1677099337344$ | $182803887520224$ | $19925626157352960$ | $2171893278485821536$ | $236736367474111730304$ | 
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 8 curves (of which 0 are hyperelliptic):
- $y^2=x^3+5 x+10$
- $y^2=x^3+12 x+12$
- $y^2=x^3+77 x+45$
- $y^2=x^3+20 x+40$
- $y^2=x^3+93 x+77$
- $y^2=x^3+83 x+57$
- $y^2=x^3+96 x+96$
- $y^2=x^3+98 x+98$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{109}$.
Endomorphism algebra over $\F_{109}$| The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-15}) \). | 
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change | 
|---|---|---|
| 1.109.o | $2$ | (not in LMFDB) | 
