| Label |
Polynomial |
Degree |
Signature |
Discriminant |
Ram. prime count |
Root discriminant |
Galois root discriminant |
CM field |
Galois |
Monogenic |
Galois group |
Class group |
Narrow class group |
Unit group torsion |
Unit group rank |
Regulator |
| 8.0.433...696.1 |
$x^{8} + 2096$ |
$8$ |
[0,4] |
$2^{16}\cdot 131^{7}$ |
$2$ |
$284.88683149$ |
$439.35555554075074$ |
|
|
? |
$Z_8 : Z_8^\times$ (as 8T15) |
$[5]$ |
$[5]$ |
$2$ |
$3$ |
$1853315.29516$ |
| 8.0.433...696.2 |
$x^{8} + 131$ |
$8$ |
[0,4] |
$2^{16}\cdot 131^{7}$ |
$2$ |
$284.88683149$ |
$439.35555554075074$ |
|
|
? |
$Z_8 : Z_8^\times$ (as 8T15) |
$[5]$ |
$[5]$ |
$2$ |
$3$ |
$1853315.29516$ |
| 8.0.173...784.1 |
$x^{8} + 2358 x^{4} - 39300 x^{2} + 1471916$ |
$8$ |
[0,4] |
$2^{18}\cdot 131^{7}$ |
$2$ |
$338.789446979$ |
$648.8517717863546$ |
|
|
? |
$(C_4^2 : C_2):C_2$ (as 8T26) |
$[5]$ |
$[5]$ |
$2$ |
$3$ |
$3421889.68259$ |
| 8.0.173...784.2 |
$x^{8} + 2358 x^{4} + 39300 x^{2} + 1471916$ |
$8$ |
[0,4] |
$2^{18}\cdot 131^{7}$ |
$2$ |
$338.789446979$ |
$648.8517717863546$ |
|
|
? |
$(C_4^2 : C_2):C_2$ (as 8T26) |
$[5]$ |
$[5]$ |
$2$ |
$3$ |
$5600149.56116$ |
| 8.0.694...136.1 |
$x^{8} + 4716 x^{4} - 39300 x^{2} + 81875$ |
$8$ |
[0,4] |
$2^{20}\cdot 131^{7}$ |
$2$ |
$402.890820835$ |
$648.8517717863546$ |
|
|
? |
$(C_4^2 : C_2):C_2$ (as 8T26) |
$[5]$ |
$[5]$ |
$2$ |
$3$ |
$34276664.9218$ |
| 8.0.694...136.2 |
$x^{8} + 4716 x^{4} + 39300 x^{2} + 81875$ |
$8$ |
[0,4] |
$2^{20}\cdot 131^{7}$ |
$2$ |
$402.890820835$ |
$648.8517717863546$ |
|
|
? |
$(C_4^2 : C_2):C_2$ (as 8T26) |
$[5]$ |
$[5]$ |
$2$ |
$3$ |
$20944256.0004$ |
| 8.0.277...544.1 |
$x^{8} + 8384$ |
$8$ |
[0,4] |
$2^{22}\cdot 131^{7}$ |
$2$ |
$479.120630707$ |
$621.3425853496952$ |
|
|
? |
$Z_8 : Z_8^\times$ (as 8T15) |
$[5]$ |
$[5]$ |
$2$ |
$3$ |
$54870749.0497$ |
| 8.0.277...544.2 |
$x^{8} + 524$ |
$8$ |
[0,4] |
$2^{22}\cdot 131^{7}$ |
$2$ |
$479.120630707$ |
$621.3425853496952$ |
|
|
? |
$Z_8 : Z_8^\times$ (as 8T15) |
$[5]$ |
$[5]$ |
$2$ |
$3$ |
$54870749.0497$ |
| 8.0.177...816.1 |
$x^{8} + 262 x^{4} + 10611$ |
$8$ |
[0,4] |
$2^{28}\cdot 131^{7}$ |
$2$ |
$805.781641671$ |
$917.6149756300749$ |
|
|
? |
$(C_4^2 : C_2):C_2$ (as 8T26) |
$[70]$ |
$[70]$ |
$2$ |
$3$ |
$12079806.2397$ |
| 8.4.177...816.1 |
$x^{8} - 786 x^{4} - 5240 x^{2} + 10611$ |
$8$ |
[4,2] |
$2^{28}\cdot 131^{7}$ |
$2$ |
$805.781641671$ |
$878.7111110815015$ |
|
|
? |
$Z_8 : Z_8^\times$ (as 8T15) |
trivial |
$[2]$ |
$2$ |
$5$ |
$2789378971.92$ |
| 8.8.177...816.1 |
$x^{8} - 1048 x^{6} + 75718 x^{4} - 1598200 x^{2} + 6631875$ |
$8$ |
[8,0] |
$2^{28}\cdot 131^{7}$ |
$2$ |
$805.781641671$ |
$878.7111110815015$ |
|
|
? |
$QD_{16}$ (as 8T8) |
trivial |
$[2]$ |
$2$ |
$7$ |
$7682052183.26$ |
| 8.0.177...816.2 |
$x^{8} + 1048 x^{4} + 169776$ |
$8$ |
[0,4] |
$2^{28}\cdot 131^{7}$ |
$2$ |
$805.781641671$ |
$917.6149756300749$ |
|
|
? |
$(C_4^2 : C_2):C_2$ (as 8T26) |
$[70]$ |
$[70]$ |
$2$ |
$3$ |
$11639934.1923$ |
| 8.4.177...816.2 |
$x^{8} - 262 x^{4} + 10611$ |
$8$ |
[4,2] |
$2^{28}\cdot 131^{7}$ |
$2$ |
$805.781641671$ |
$917.6149756300749$ |
|
|
? |
$(C_4^2 : C_2):C_2$ (as 8T26) |
trivial |
$[2]$ |
$2$ |
$5$ |
$2767228809.69$ |
| 8.0.177...816.3 |
$x^{8} + 2096 x^{4} + 679104$ |
$8$ |
[0,4] |
$2^{28}\cdot 131^{7}$ |
$2$ |
$805.781641671$ |
$917.6149756300749$ |
|
|
? |
$(C_4^2 : C_2):C_2$ (as 8T26) |
$[70]$ |
$[70]$ |
$2$ |
$3$ |
$12058586.9407$ |
| 8.4.177...816.3 |
$x^{8} - 786 x^{4} + 5240 x^{2} + 10611$ |
$8$ |
[4,2] |
$2^{28}\cdot 131^{7}$ |
$2$ |
$805.781641671$ |
$878.7111110815015$ |
|
|
? |
$Z_8 : Z_8^\times$ (as 8T15) |
trivial |
$[2]$ |
$2$ |
$5$ |
$2789378971.92$ |
| 8.0.177...816.4 |
$x^{8} + 1048 x^{6} + 75718 x^{4} + 1598200 x^{2} + 6631875$ |
$8$ |
[0,4] |
$2^{28}\cdot 131^{7}$ |
$2$ |
$805.781641671$ |
$878.7111110815015$ |
✓ |
|
? |
$QD_{16}$ (as 8T8) |
$[11826]$ |
$[11826]$ |
$2$ |
$3$ |
$72889.5328164$ |
| 8.4.177...816.4 |
$x^{8} - 1048 x^{4} + 169776$ |
$8$ |
[4,2] |
$2^{28}\cdot 131^{7}$ |
$2$ |
$805.781641671$ |
$917.6149756300749$ |
|
|
? |
$(C_4^2 : C_2):C_2$ (as 8T26) |
trivial |
$[2]$ |
$2$ |
$5$ |
$2871802133.05$ |
| 8.0.177...816.5 |
$x^{8} + 524 x^{4} + 42444$ |
$8$ |
[0,4] |
$2^{28}\cdot 131^{7}$ |
$2$ |
$805.781641671$ |
$917.6149756300749$ |
|
|
? |
$(C_4^2 : C_2):C_2$ (as 8T26) |
$[70]$ |
$[70]$ |
$2$ |
$3$ |
$9113339.03726$ |
| 8.4.177...816.5 |
$x^{8} - 2096 x^{4} + 679104$ |
$8$ |
[4,2] |
$2^{28}\cdot 131^{7}$ |
$2$ |
$805.781641671$ |
$917.6149756300749$ |
|
|
? |
$(C_4^2 : C_2):C_2$ (as 8T26) |
trivial |
$[2]$ |
$2$ |
$5$ |
$2166566745.12$ |
| 8.4.177...816.6 |
$x^{8} - 524 x^{4} + 42444$ |
$8$ |
[4,2] |
$2^{28}\cdot 131^{7}$ |
$2$ |
$805.781641671$ |
$917.6149756300749$ |
|
|
? |
$(C_4^2 : C_2):C_2$ (as 8T26) |
trivial |
$[2]$ |
$2$ |
$5$ |
$2866757546.49$ |
| 8.2.355...632.1 |
$x^{8} - 37728 x^{4} - 50304 x^{2} - 16768$ |
$8$ |
[2,3] |
$-\,2^{29}\cdot 131^{7}$ |
$2$ |
$878.711111082$ |
$1384.8318794479146$ |
|
|
? |
$C_2 \wr C_2\wr C_2$ (as 8T35) |
trivial |
$[2]$ |
$2$ |
$4$ |
$2677556526.16$ |
| 8.6.355...632.1 |
$x^{8} - 37728 x^{4} + 50304 x^{2} - 16768$ |
$8$ |
[6,1] |
$-\,2^{29}\cdot 131^{7}$ |
$2$ |
$878.711111082$ |
$1384.8318794479146$ |
|
|
? |
$C_2 \wr C_2\wr C_2$ (as 8T35) |
trivial |
$[2]$ |
$2$ |
$6$ |
$5558432429.13$ |
| 8.2.355...632.2 |
$x^{8} - 22008 x^{4} - 693776 x^{2} - 4989528$ |
$8$ |
[2,3] |
$-\,2^{29}\cdot 131^{7}$ |
$2$ |
$878.711111082$ |
$1384.8318794479146$ |
|
|
? |
$C_2 \wr C_2\wr C_2$ (as 8T35) |
trivial |
$[2]$ |
$2$ |
$4$ |
$2401347430.43$ |
| 8.6.355...632.2 |
$x^{8} - 22008 x^{4} + 693776 x^{2} - 4989528$ |
$8$ |
[6,1] |
$-\,2^{29}\cdot 131^{7}$ |
$2$ |
$878.711111082$ |
$1384.8318794479146$ |
|
|
? |
$C_2 \wr C_2\wr C_2$ (as 8T35) |
trivial |
$[2]$ |
$2$ |
$6$ |
$6478030149.88$ |
| 8.6.355...632.3 |
$x^{8} - 524 x^{6} + 30916 x^{4} - 407672 x^{2} - 2266038$ |
$8$ |
[6,1] |
$-\,2^{29}\cdot 131^{7}$ |
$2$ |
$878.711111082$ |
$1384.8318794479146$ |
|
|
? |
$C_2 \wr C_2\wr C_2$ (as 8T35) |
trivial |
$[2]$ |
$2$ |
$6$ |
$5238095916.38$ |
| 8.2.355...632.3 |
$x^{8} + 524 x^{6} + 30916 x^{4} + 407672 x^{2} - 2266038$ |
$8$ |
[2,3] |
$-\,2^{29}\cdot 131^{7}$ |
$2$ |
$878.711111082$ |
$1384.8318794479146$ |
|
|
? |
$C_2 \wr C_2\wr C_2$ (as 8T35) |
trivial |
$[2]$ |
$2$ |
$4$ |
$2389235510.03$ |
| 8.2.355...632.4 |
$x^{8} - 9432 x^{4} - 6288 x^{2} - 1048$ |
$8$ |
[2,3] |
$-\,2^{29}\cdot 131^{7}$ |
$2$ |
$878.711111082$ |
$1384.8318794479146$ |
|
|
? |
$C_2 \wr C_2\wr C_2$ (as 8T35) |
$[15]$ |
$[30]$ |
$2$ |
$4$ |
$184059777.629$ |
| 8.6.355...632.4 |
$x^{8} - 9432 x^{4} + 6288 x^{2} - 1048$ |
$8$ |
[6,1] |
$-\,2^{29}\cdot 131^{7}$ |
$2$ |
$878.711111082$ |
$1384.8318794479146$ |
|
|
? |
$C_2 \wr C_2\wr C_2$ (as 8T35) |
trivial |
$[2]$ |
$2$ |
$6$ |
$4953199974.76$ |
| 8.4.710...264.1 |
$x^{8} - 4716 x^{4} - 6288 x^{2} + 5559116$ |
$8$ |
[4,2] |
$2^{30}\cdot 131^{7}$ |
$2$ |
$958.241261413$ |
$1384.8318794479146$ |
|
|
? |
$C_2 \wr C_2\wr C_2$ (as 8T35) |
trivial |
$[2]$ |
$2$ |
$5$ |
$4542628993.03$ |
| 8.0.710...264.1 |
$x^{8} - 4716 x^{4} + 6288 x^{2} + 5559116$ |
$8$ |
[0,4] |
$2^{30}\cdot 131^{7}$ |
$2$ |
$958.241261413$ |
$1384.8318794479146$ |
|
|
? |
$C_2 \wr C_2\wr C_2$ (as 8T35) |
$[2]$ |
$[2]$ |
$2$ |
$3$ |
$1094116557.25$ |
| 8.0.710...264.2 |
$x^{8} - 18864 x^{4} + 50304 x^{2} + 88945856$ |
$8$ |
[0,4] |
$2^{30}\cdot 131^{7}$ |
$2$ |
$958.241261413$ |
$1384.8318794479146$ |
|
|
? |
$C_2 \wr C_2\wr C_2$ (as 8T35) |
$[30]$ |
$[30]$ |
$2$ |
$3$ |
$75211428.1291$ |
| 8.4.710...264.2 |
$x^{8} - 18864 x^{4} - 50304 x^{2} + 88945856$ |
$8$ |
[4,2] |
$2^{30}\cdot 131^{7}$ |
$2$ |
$958.241261413$ |
$1384.8318794479146$ |
|
|
? |
$C_2 \wr C_2\wr C_2$ (as 8T35) |
trivial |
$[2]$ |
$2$ |
$5$ |
$4048002759.86$ |
| 8.4.710...264.3 |
$x^{8} + 20436 x^{4} - 693776 x^{2} + 570636$ |
$8$ |
[4,2] |
$2^{30}\cdot 131^{7}$ |
$2$ |
$958.241261413$ |
$1384.8318794479146$ |
|
|
? |
$C_2 \wr C_2\wr C_2$ (as 8T35) |
trivial |
$[2]$ |
$2$ |
$5$ |
$4134637608.1$ |
| 8.0.710...264.3 |
$x^{8} + 20436 x^{4} + 693776 x^{2} + 570636$ |
$8$ |
[0,4] |
$2^{30}\cdot 131^{7}$ |
$2$ |
$958.241261413$ |
$1384.8318794479146$ |
|
|
? |
$C_2 \wr C_2\wr C_2$ (as 8T35) |
$[2]$ |
$[2]$ |
$2$ |
$3$ |
$942959345.538$ |
| 8.0.710...264.4 |
$x^{8} + 524 x^{6} + 63666 x^{4} + 1857580 x^{2} + 21913811$ |
$8$ |
[0,4] |
$2^{30}\cdot 131^{7}$ |
$2$ |
$958.241261413$ |
$1384.8318794479146$ |
|
|
? |
$C_2 \wr C_2\wr C_2$ (as 8T35) |
$[2]$ |
$[2]$ |
$2$ |
$3$ |
$947739555.984$ |
| 8.4.710...264.4 |
$x^{8} - 524 x^{6} + 63666 x^{4} - 1857580 x^{2} + 21913811$ |
$8$ |
[4,2] |
$2^{30}\cdot 131^{7}$ |
$2$ |
$958.241261413$ |
$1384.8318794479146$ |
|
|
? |
$C_2 \wr C_2\wr C_2$ (as 8T35) |
trivial |
$[2]$ |
$2$ |
$5$ |
$5113367053.92$ |
| 8.2.142...528.1 |
$x^{8} - 16768$ |
$8$ |
[2,3] |
$-\,2^{31}\cdot 131^{7}$ |
$2$ |
$1044.96950533$ |
$1139.5473259618282$ |
|
|
? |
$Z_8 : Z_8^\times$ (as 8T15) |
$[3]$ |
$[6]$ |
$2$ |
$4$ |
$1267421566.57$ |
| 8.2.142...528.2 |
$x^{8} - 262$ |
$8$ |
[2,3] |
$-\,2^{31}\cdot 131^{7}$ |
$2$ |
$1044.96950533$ |
$1139.5473259618282$ |
|
|
✓ |
$Z_8 : Z_8^\times$ (as 8T15) |
trivial |
$[2]$ |
$2$ |
$4$ |
$4548504585.04$ |
| 8.2.142...528.3 |
$x^{8} - 10480 x^{4} - 6875928$ |
$8$ |
[2,3] |
$-\,2^{31}\cdot 131^{7}$ |
$2$ |
$1044.96950533$ |
$1139.5473259618282$ |
|
|
? |
$QD_{16}$ (as 8T8) |
trivial |
$[2]$ |
$2$ |
$4$ |
$3255933387.41$ |
| 8.2.142...528.4 |
$x^{8} + 10480 x^{4} - 6875928$ |
$8$ |
[2,3] |
$-\,2^{31}\cdot 131^{7}$ |
$2$ |
$1044.96950533$ |
$1139.5473259618282$ |
|
|
? |
$QD_{16}$ (as 8T8) |
trivial |
$[2]$ |
$2$ |
$4$ |
$4300951453.2$ |
| 8.2.142...528.5 |
$x^{8} - 5240 x^{4} - 1718982$ |
$8$ |
[2,3] |
$-\,2^{31}\cdot 131^{7}$ |
$2$ |
$1044.96950533$ |
$1139.5473259618282$ |
|
|
? |
$QD_{16}$ (as 8T8) |
trivial |
$[2]$ |
$2$ |
$4$ |
$5223750825.75$ |
| 8.2.142...528.6 |
$x^{8} + 5240 x^{4} - 1718982$ |
$8$ |
[2,3] |
$-\,2^{31}\cdot 131^{7}$ |
$2$ |
$1044.96950533$ |
$1139.5473259618282$ |
|
|
? |
$QD_{16}$ (as 8T8) |
$[11]$ |
$[22]$ |
$2$ |
$4$ |
$406809627.381$ |
| 8.2.142...528.7 |
$x^{8} - 4192$ |
$8$ |
[2,3] |
$-\,2^{31}\cdot 131^{7}$ |
$2$ |
$1044.96950533$ |
$1139.5473259618282$ |
|
|
? |
$Z_8 : Z_8^\times$ (as 8T15) |
trivial |
$[2]$ |
$2$ |
$4$ |
$4548504585.04$ |
| 8.2.142...528.8 |
$x^{8} - 1048$ |
$8$ |
[2,3] |
$-\,2^{31}\cdot 131^{7}$ |
$2$ |
$1044.96950533$ |
$1139.5473259618282$ |
|
|
? |
$Z_8 : Z_8^\times$ (as 8T15) |
$[3]$ |
$[6]$ |
$2$ |
$4$ |
$1267421566.57$ |