Normalized defining polynomial
\( x^{8} + 131 \)
Invariants
| Degree: | $8$ |
| |
| Signature: | $[0, 4]$ |
| |
| Discriminant: |
\(43388935988891549696\)
\(\medspace = 2^{16}\cdot 131^{7}\)
|
| |
| Root discriminant: | \(284.89\) |
| |
| Galois root discriminant: | $2^{21/8}131^{7/8}\approx 439.35555554075074$ | ||
| Ramified primes: |
\(2\), \(131\)
|
| |
| Discriminant root field: | \(\Q(\sqrt{131}) \) | ||
| $\Aut(K/\Q)$: | $C_2$ |
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
| Maximal CM subfield: | \(\Q(\sqrt{-131}) \) | ||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2}a^{4}-\frac{1}{2}$, $\frac{1}{2}a^{5}-\frac{1}{2}a$, $\frac{1}{2}a^{6}-\frac{1}{2}a^{2}$, $\frac{1}{2}a^{7}-\frac{1}{2}a^{3}$
| Monogenic: | Not computed | |
| Index: | $1$ | |
| Inessential primes: | None |
Class group and class number
| Ideal class group: | $C_{5}$, which has order $5$ (assuming GRH) |
| |
| Narrow class group: | $C_{5}$, which has order $5$ (assuming GRH) |
|
Unit group
| Rank: | $3$ |
| |
| Torsion generator: |
\( -1 \)
(order $2$)
|
| |
| Fundamental units: |
$\frac{12077842863}{2}a^{6}+\frac{35921856655}{2}a^{4}+\frac{33629414223}{2}a^{2}-\frac{250245893871}{2}$, $5515113a^{7}+\frac{33562069}{2}a^{6}-\frac{85475205}{2}a^{5}+4783294a^{4}+134665706a^{3}-\frac{399269129}{2}a^{2}-\frac{369173881}{2}a+948622353$, $\frac{82\cdots 95}{2}a^{7}+\frac{21\cdots 11}{2}a^{6}-15\!\cdots\!02a^{5}+18\!\cdots\!73a^{4}+\frac{53\cdots 19}{2}a^{3}-\frac{19\cdots 77}{2}a^{2}+48\!\cdots\!31a+26\!\cdots\!17$
|
| |
| Regulator: | \( 1853315.29516 \) (assuming GRH) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{4}\cdot 1853315.29516 \cdot 5}{2\cdot\sqrt{43388935988891549696}}\cr\approx \mathstrut & 1.09627444863 \end{aligned}\] (assuming GRH)
Galois group
| A solvable group of order 32 |
| The 11 conjugacy class representatives for $Z_8 : Z_8^\times$ |
| Character table for $Z_8 : Z_8^\times$ |
Intermediate fields
| \(\Q(\sqrt{-131}) \), 4.0.35969456.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | deg 32 |
| Degree 16 siblings: | deg 16, deg 16, deg 16, deg 16 |
| Arithmetically equivalent sibling: | 8.0.43388935988891549696.1 |
| Minimal sibling: | This field is its own minimal sibling |
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/padicField/3.2.0.1}{2} }^{3}{,}\,{\href{/padicField/3.1.0.1}{1} }^{2}$ | ${\href{/padicField/5.4.0.1}{4} }^{2}$ | ${\href{/padicField/7.2.0.1}{2} }^{3}{,}\,{\href{/padicField/7.1.0.1}{1} }^{2}$ | ${\href{/padicField/11.2.0.1}{2} }^{3}{,}\,{\href{/padicField/11.1.0.1}{1} }^{2}$ | ${\href{/padicField/13.4.0.1}{4} }^{2}$ | ${\href{/padicField/17.8.0.1}{8} }$ | ${\href{/padicField/19.4.0.1}{4} }^{2}$ | ${\href{/padicField/23.2.0.1}{2} }^{4}$ | ${\href{/padicField/29.8.0.1}{8} }$ | ${\href{/padicField/31.2.0.1}{2} }^{4}$ | ${\href{/padicField/37.8.0.1}{8} }$ | ${\href{/padicField/41.4.0.1}{4} }^{2}$ | ${\href{/padicField/43.2.0.1}{2} }^{3}{,}\,{\href{/padicField/43.1.0.1}{1} }^{2}$ | ${\href{/padicField/47.2.0.1}{2} }^{4}$ | ${\href{/padicField/53.2.0.1}{2} }^{2}{,}\,{\href{/padicField/53.1.0.1}{1} }^{4}$ | ${\href{/padicField/59.2.0.1}{2} }^{3}{,}\,{\href{/padicField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(2\)
| 2.2.4.16b3.3 | $x^{8} + 8 x^{7} + 24 x^{6} + 48 x^{5} + 63 x^{4} + 60 x^{3} + 42 x^{2} + 20 x + 17$ | $4$ | $2$ | $16$ | $Z_8 : Z_8^\times$ | $$[2, 2, 3, 3]^{2}$$ |
|
\(131\)
| 131.1.8.7a1.1 | $x^{8} + 131$ | $8$ | $1$ | $7$ | $QD_{16}$ | $$[\ ]_{8}^{2}$$ |