Normalized defining polynomial
\( x^{8} + 5240x^{4} - 1718982 \)
Invariants
| Degree: | $8$ |
| |
| Signature: | $[2, 3]$ |
| |
| Discriminant: |
\(-1421768654483998300438528\)
\(\medspace = -\,2^{31}\cdot 131^{7}\)
|
| |
| Root discriminant: | \(1044.97\) |
| |
| Galois root discriminant: | $2^{4}131^{7/8}\approx 1139.5473259618282$ | ||
| Ramified primes: |
\(2\), \(131\)
|
| |
| Discriminant root field: | \(\Q(\sqrt{-262}) \) | ||
| $\Aut(K/\Q)$: | $C_2$ |
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
| This field has no CM subfields. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{181}a^{4}+\frac{86}{181}$, $\frac{1}{1629}a^{5}-\frac{457}{1629}a$, $\frac{1}{14661}a^{6}+\frac{4430}{14661}a^{2}$, $\frac{1}{131949}a^{7}+\frac{19091}{131949}a^{3}$
| Monogenic: | Not computed | |
| Index: | $1$ | |
| Inessential primes: | None |
Class group and class number
| Ideal class group: | $C_{11}$, which has order $11$ (assuming GRH) |
| |
| Narrow class group: | $C_{22}$, which has order $22$ (assuming GRH) |
|
Unit group
| Rank: | $4$ |
| |
| Torsion generator: |
\( -1 \)
(order $2$)
|
| |
| Fundamental units: |
$\frac{6485718}{181}a^{4}+\frac{35994054737}{181}$, $\frac{35\cdots 80}{131949}a^{7}-\frac{27\cdots 40}{4887}a^{6}+\frac{10\cdots 56}{1629}a^{5}-\frac{71\cdots 26}{181}a^{4}-\frac{10\cdots 52}{131949}a^{3}+\frac{85\cdots 38}{4887}a^{2}-\frac{33\cdots 66}{1629}a+\frac{22\cdots 21}{181}$, $\frac{17\cdots 56}{43983}a^{7}-\frac{76\cdots 30}{4887}a^{6}-\frac{37\cdots 43}{543}a^{5}+\frac{49\cdots 50}{181}a^{4}+\frac{96\cdots 84}{43983}a^{3}-\frac{42\cdots 04}{4887}a^{2}-\frac{20\cdots 18}{543}a+\frac{27\cdots 29}{181}$, $\frac{17\cdots 56}{43983}a^{7}+\frac{76\cdots 30}{4887}a^{6}-\frac{37\cdots 43}{543}a^{5}-\frac{49\cdots 50}{181}a^{4}+\frac{96\cdots 84}{43983}a^{3}+\frac{42\cdots 04}{4887}a^{2}-\frac{20\cdots 18}{543}a-\frac{27\cdots 29}{181}$
|
| |
| Regulator: | \( 406809627.381 \) (assuming GRH) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{2}\cdot(2\pi)^{3}\cdot 406809627.381 \cdot 11}{2\cdot\sqrt{1421768654483998300438528}}\cr\approx \mathstrut & 1.86182578423 \end{aligned}\] (assuming GRH)
Galois group
$\SD_{16}$ (as 8T8):
| A solvable group of order 16 |
| The 7 conjugacy class representatives for $QD_{16}$ |
| Character table for $QD_{16}$ |
Intermediate fields
| \(\Q(\sqrt{262}) \), 4.2.4604090368.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | deg 16 |
| Minimal sibling: | This field is its own minimal sibling |
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/padicField/3.2.0.1}{2} }^{3}{,}\,{\href{/padicField/3.1.0.1}{1} }^{2}$ | ${\href{/padicField/5.8.0.1}{8} }$ | ${\href{/padicField/7.4.0.1}{4} }^{2}$ | ${\href{/padicField/11.2.0.1}{2} }^{3}{,}\,{\href{/padicField/11.1.0.1}{1} }^{2}$ | ${\href{/padicField/13.8.0.1}{8} }$ | ${\href{/padicField/17.8.0.1}{8} }$ | ${\href{/padicField/19.4.0.1}{4} }^{2}$ | ${\href{/padicField/23.2.0.1}{2} }^{3}{,}\,{\href{/padicField/23.1.0.1}{1} }^{2}$ | ${\href{/padicField/29.4.0.1}{4} }^{2}$ | ${\href{/padicField/31.2.0.1}{2} }^{3}{,}\,{\href{/padicField/31.1.0.1}{1} }^{2}$ | ${\href{/padicField/37.2.0.1}{2} }^{4}$ | ${\href{/padicField/41.1.0.1}{1} }^{8}$ | ${\href{/padicField/43.2.0.1}{2} }^{3}{,}\,{\href{/padicField/43.1.0.1}{1} }^{2}$ | ${\href{/padicField/47.2.0.1}{2} }^{3}{,}\,{\href{/padicField/47.1.0.1}{1} }^{2}$ | ${\href{/padicField/53.8.0.1}{8} }$ | ${\href{/padicField/59.2.0.1}{2} }^{3}{,}\,{\href{/padicField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(2\)
| 2.1.8.31a1.101 | $x^{8} + 8 x^{6} + 16 x^{3} + 10$ | $8$ | $1$ | $31$ | $QD_{16}$ | $$[2, 3, 4, 5]$$ |
|
\(131\)
| 131.1.8.7a1.1 | $x^{8} + 131$ | $8$ | $1$ | $7$ | $QD_{16}$ | $$[\ ]_{8}^{2}$$ |