Normalized defining polynomial
\( x^{9} - 3 x^{8} - 1677 x^{7} - 12090 x^{6} + 194712 x^{5} - 2410023 x^{4} + 13118637 x^{3} + \cdots - 222062239 \)
Invariants
| Degree: | $9$ |
| |
| Signature: | $[3, 3]$ |
| |
| Discriminant: |
\(-14523614533018650773047594176\)
\(\medspace = -\,2^{6}\cdot 3^{15}\cdot 7^{7}\cdot 79^{7}\)
|
| |
| Root discriminant: | \(1346.23\) |
| |
| Galois root discriminant: | $2^{2/3}3^{31/18}7^{5/6}79^{5/6}\approx 2032.35592261253$ | ||
| Ramified primes: |
\(2\), \(3\), \(7\), \(79\)
|
| |
| Discriminant root field: | \(\Q(\sqrt{-1659}) \) | ||
| $\Aut(K/\Q)$: | $C_3$ |
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
| This field has no CM subfields. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $\frac{1}{3}a^{5}+\frac{1}{3}a^{4}+\frac{1}{3}a^{3}-\frac{1}{3}a^{2}-\frac{1}{3}a-\frac{1}{3}$, $\frac{1}{3}a^{6}+\frac{1}{3}a^{3}+\frac{1}{3}$, $\frac{1}{3}a^{7}+\frac{1}{3}a^{4}+\frac{1}{3}a$, $\frac{1}{33\cdots 83}a^{8}+\frac{18\cdots 11}{90\cdots 59}a^{7}-\frac{43\cdots 03}{33\cdots 83}a^{6}-\frac{10\cdots 30}{11\cdots 61}a^{5}-\frac{46\cdots 59}{11\cdots 61}a^{4}+\frac{43\cdots 95}{11\cdots 61}a^{3}-\frac{35\cdots 15}{33\cdots 83}a^{2}+\frac{14\cdots 86}{33\cdots 83}a+\frac{19\cdots 28}{33\cdots 83}$
| Monogenic: | Not computed | |
| Index: | $1$ | |
| Inessential primes: | None |
Class group and class number
| Ideal class group: | $C_{3}\times C_{18}\times C_{18}\times C_{774}$, which has order $752328$ (assuming GRH) |
| |
| Narrow class group: | $C_{3}\times C_{18}\times C_{18}\times C_{774}$, which has order $752328$ (assuming GRH) |
|
Unit group
| Rank: | $5$ |
| |
| Torsion generator: |
\( -1 \)
(order $2$)
|
| |
| Fundamental units: |
$\frac{28\cdots 09}{11\cdots 61}a^{8}-\frac{90\cdots 63}{30\cdots 53}a^{7}-\frac{48\cdots 61}{11\cdots 61}a^{6}+\frac{68\cdots 64}{11\cdots 61}a^{5}+\frac{10\cdots 48}{11\cdots 61}a^{4}-\frac{10\cdots 69}{11\cdots 61}a^{3}+\frac{70\cdots 87}{11\cdots 61}a^{2}-\frac{22\cdots 71}{11\cdots 61}a+\frac{51\cdots 58}{11\cdots 61}$, $\frac{39\cdots 87}{11\cdots 61}a^{8}-\frac{62\cdots 94}{30\cdots 53}a^{7}-\frac{67\cdots 73}{11\cdots 61}a^{6}-\frac{29\cdots 21}{11\cdots 61}a^{5}+\frac{11\cdots 49}{11\cdots 61}a^{4}-\frac{92\cdots 12}{11\cdots 61}a^{3}+\frac{57\cdots 21}{11\cdots 61}a^{2}-\frac{15\cdots 50}{11\cdots 61}a+\frac{37\cdots 33}{11\cdots 61}$, $\frac{15\cdots 04}{33\cdots 83}a^{8}+\frac{68\cdots 26}{90\cdots 59}a^{7}-\frac{25\cdots 68}{33\cdots 83}a^{6}-\frac{30\cdots 21}{33\cdots 83}a^{5}+\frac{19\cdots 42}{33\cdots 83}a^{4}-\frac{22\cdots 50}{33\cdots 83}a^{3}+\frac{65\cdots 18}{33\cdots 83}a^{2}-\frac{21\cdots 60}{33\cdots 83}a+\frac{93\cdots 68}{33\cdots 83}$, $\frac{14\cdots 48}{33\cdots 83}a^{8}+\frac{62\cdots 88}{90\cdots 59}a^{7}-\frac{24\cdots 44}{33\cdots 83}a^{6}-\frac{29\cdots 51}{33\cdots 83}a^{5}+\frac{19\cdots 40}{33\cdots 83}a^{4}-\frac{22\cdots 64}{33\cdots 83}a^{3}+\frac{67\cdots 50}{33\cdots 83}a^{2}-\frac{22\cdots 97}{33\cdots 83}a+\frac{11\cdots 52}{33\cdots 83}$, $\frac{64\cdots 56}{11\cdots 61}a^{8}+\frac{16\cdots 52}{30\cdots 53}a^{7}-\frac{11\cdots 52}{11\cdots 61}a^{6}-\frac{21\cdots 88}{11\cdots 61}a^{5}+\frac{39\cdots 60}{11\cdots 61}a^{4}+\frac{47\cdots 24}{11\cdots 61}a^{3}-\frac{70\cdots 64}{11\cdots 61}a^{2}+\frac{34\cdots 48}{11\cdots 61}a-\frac{76\cdots 85}{11\cdots 61}$
|
| |
| Regulator: | \( 79730.41093997915 \) (assuming GRH) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{3}\cdot(2\pi)^{3}\cdot 79730.41093997915 \cdot 752328}{2\cdot\sqrt{14523614533018650773047594176}}\cr\approx \mathstrut & 0.493848191344604 \end{aligned}\] (assuming GRH)
Galois group
$C_3\times S_3$ (as 9T4):
| A solvable group of order 18 |
| The 9 conjugacy class representatives for $S_3\times C_3$ |
| Character table for $S_3\times C_3$ |
Intermediate fields
| 3.3.24770529.1, 3.1.59724.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 6 sibling: | data not computed |
| Minimal sibling: | 6.0.16286843814611139504.2 |
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/padicField/5.3.0.1}{3} }^{3}$ | R | ${\href{/padicField/11.6.0.1}{6} }{,}\,{\href{/padicField/11.3.0.1}{3} }$ | ${\href{/padicField/13.6.0.1}{6} }{,}\,{\href{/padicField/13.3.0.1}{3} }$ | ${\href{/padicField/17.6.0.1}{6} }{,}\,{\href{/padicField/17.3.0.1}{3} }$ | ${\href{/padicField/19.6.0.1}{6} }{,}\,{\href{/padicField/19.3.0.1}{3} }$ | ${\href{/padicField/23.6.0.1}{6} }{,}\,{\href{/padicField/23.3.0.1}{3} }$ | ${\href{/padicField/29.3.0.1}{3} }^{3}$ | ${\href{/padicField/31.6.0.1}{6} }{,}\,{\href{/padicField/31.3.0.1}{3} }$ | ${\href{/padicField/37.2.0.1}{2} }^{3}{,}\,{\href{/padicField/37.1.0.1}{1} }^{3}$ | ${\href{/padicField/41.6.0.1}{6} }{,}\,{\href{/padicField/41.3.0.1}{3} }$ | ${\href{/padicField/43.2.0.1}{2} }^{3}{,}\,{\href{/padicField/43.1.0.1}{1} }^{3}$ | ${\href{/padicField/47.2.0.1}{2} }^{3}{,}\,{\href{/padicField/47.1.0.1}{1} }^{3}$ | ${\href{/padicField/53.3.0.1}{3} }^{3}$ | ${\href{/padicField/59.2.0.1}{2} }^{3}{,}\,{\href{/padicField/59.1.0.1}{1} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(2\)
| 2.3.3.6a1.1 | $x^{9} + 3 x^{7} + 3 x^{6} + 3 x^{5} + 6 x^{4} + 4 x^{3} + 3 x^{2} + 3 x + 3$ | $3$ | $3$ | $6$ | $S_3\times C_3$ | $$[\ ]_{3}^{6}$$ |
|
\(3\)
| 3.1.9.15b2.9 | $x^{9} + 6 x^{8} + 6 x^{7} + 3 x^{3} + 21$ | $9$ | $1$ | $15$ | $S_3\times C_3$ | $$[\frac{3}{2}, 2]_{2}$$ |
|
\(7\)
| 7.1.3.2a1.3 | $x^{3} + 21$ | $3$ | $1$ | $2$ | $C_3$ | $$[\ ]_{3}$$ |
| 7.1.6.5a1.3 | $x^{6} + 21$ | $6$ | $1$ | $5$ | $C_6$ | $$[\ ]_{6}$$ | |
|
\(79\)
| 79.1.3.2a1.2 | $x^{3} + 237$ | $3$ | $1$ | $2$ | $C_3$ | $$[\ ]_{3}$$ |
| 79.1.6.5a1.2 | $x^{6} + 158$ | $6$ | $1$ | $5$ | $C_6$ | $$[\ ]_{6}$$ |