Normalized defining polynomial
\( x^{8} - 51x^{6} + 632x^{4} - 816x^{2} + 256 \)
Invariants
| Degree: | $8$ |
| |
| Signature: | $[8, 0]$ |
| |
| Discriminant: |
\(1875745012656384\)
\(\medspace = 2^{8}\cdot 3^{4}\cdot 67^{6}\)
|
| |
| Root discriminant: | \(81.12\) |
| |
| Galois root discriminant: | $2\cdot 3^{1/2}67^{3/4}\approx 81.12350848296349$ | ||
| Ramified primes: |
\(2\), \(3\), \(67\)
|
| |
| Discriminant root field: | \(\Q\) | ||
| $\Aut(K/\Q)$ $=$ $\Gal(K/\Q)$: | $D_4$ |
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
| This field has no CM subfields. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $\frac{1}{2}a^{3}-\frac{1}{2}a$, $\frac{1}{8}a^{4}-\frac{1}{4}a^{3}-\frac{3}{8}a^{2}-\frac{1}{4}a$, $\frac{1}{16}a^{5}+\frac{1}{16}a^{3}-\frac{1}{4}a$, $\frac{1}{128}a^{6}+\frac{1}{128}a^{4}-\frac{1}{4}a^{3}+\frac{11}{32}a^{2}-\frac{1}{4}a-\frac{1}{2}$, $\frac{1}{512}a^{7}-\frac{1}{256}a^{6}-\frac{15}{512}a^{5}+\frac{15}{256}a^{4}+\frac{23}{128}a^{3}-\frac{23}{64}a^{2}-\frac{1}{8}a+\frac{1}{4}$
| Monogenic: | No | |
| Index: | Not computed | |
| Inessential primes: | $2$ |
Class group and class number
| Ideal class group: | Trivial group, which has order $1$ (assuming GRH) |
| |
| Narrow class group: | $C_{2}$, which has order $2$ (assuming GRH) |
|
Unit group
| Rank: | $7$ |
| |
| Torsion generator: |
\( -1 \)
(order $2$)
|
| |
| Fundamental units: |
$\frac{5}{256}a^{7}-\frac{251}{256}a^{5}+\frac{743}{64}a^{3}-8a+2$, $\frac{11}{64}a^{7}-\frac{561}{64}a^{5}+\frac{857}{8}a^{3}-\frac{363}{4}a$, $\frac{53}{256}a^{7}-\frac{17}{64}a^{6}-\frac{2683}{256}a^{5}+\frac{847}{64}a^{4}+\frac{8139}{64}a^{3}-\frac{2499}{16}a^{2}-\frac{489}{4}a+118$, $\frac{2021}{512}a^{7}-\frac{899}{256}a^{6}-\frac{101227}{512}a^{5}+\frac{45037}{256}a^{4}+\frac{296211}{128}a^{3}-\frac{131829}{64}a^{2}-\frac{8841}{8}a+\frac{3935}{4}$, $\frac{3}{512}a^{7}-\frac{1}{256}a^{6}-\frac{173}{512}a^{5}-\frac{49}{256}a^{4}+\frac{357}{128}a^{3}-\frac{103}{64}a^{2}-\frac{15}{8}a+\frac{5}{4}$, $\frac{3}{128}a^{7}+\frac{3}{32}a^{6}-\frac{109}{128}a^{5}-\frac{109}{32}a^{4}+\frac{85}{32}a^{3}+\frac{77}{8}a^{2}-\frac{3}{2}a-5$, $\frac{149}{128}a^{7}+\frac{41}{32}a^{6}-\frac{7427}{128}a^{5}-\frac{2047}{32}a^{4}+\frac{21393}{32}a^{3}+\frac{5929}{8}a^{2}-\frac{677}{4}a-248$
|
| |
| Regulator: | \( 2035015.20519 \) (assuming GRH) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{8}\cdot(2\pi)^{0}\cdot 2035015.20519 \cdot 1}{2\cdot\sqrt{1875745012656384}}\cr\approx \mathstrut & 6.01437811371 \end{aligned}\] (assuming GRH)
Galois group
| A solvable group of order 8 |
| The 5 conjugacy class representatives for $D_4$ |
| Character table for $D_4$ |
Intermediate fields
| \(\Q(\sqrt{3}) \), \(\Q(\sqrt{67}) \), \(\Q(\sqrt{201}) \), \(\Q(\sqrt{3}, \sqrt{67})\), 4.4.14436624.1 x2, 4.4.10827468.1 x2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/padicField/5.2.0.1}{2} }^{4}$ | ${\href{/padicField/7.2.0.1}{2} }^{4}$ | ${\href{/padicField/11.1.0.1}{1} }^{8}$ | ${\href{/padicField/13.4.0.1}{4} }^{2}$ | ${\href{/padicField/17.2.0.1}{2} }^{4}$ | ${\href{/padicField/19.2.0.1}{2} }^{4}$ | ${\href{/padicField/23.4.0.1}{4} }^{2}$ | ${\href{/padicField/29.2.0.1}{2} }^{4}$ | ${\href{/padicField/31.2.0.1}{2} }^{4}$ | ${\href{/padicField/37.2.0.1}{2} }^{4}$ | ${\href{/padicField/41.2.0.1}{2} }^{4}$ | ${\href{/padicField/43.2.0.1}{2} }^{4}$ | ${\href{/padicField/47.4.0.1}{4} }^{2}$ | ${\href{/padicField/53.2.0.1}{2} }^{4}$ | ${\href{/padicField/59.4.0.1}{4} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(2\)
| 2.1.2.2a1.2 | $x^{2} + 2 x + 6$ | $2$ | $1$ | $2$ | $C_2$ | $$[2]$$ |
| 2.1.2.2a1.2 | $x^{2} + 2 x + 6$ | $2$ | $1$ | $2$ | $C_2$ | $$[2]$$ | |
| 2.1.2.2a1.2 | $x^{2} + 2 x + 6$ | $2$ | $1$ | $2$ | $C_2$ | $$[2]$$ | |
| 2.1.2.2a1.2 | $x^{2} + 2 x + 6$ | $2$ | $1$ | $2$ | $C_2$ | $$[2]$$ | |
|
\(3\)
| 3.2.2.2a1.2 | $x^{4} + 4 x^{3} + 8 x^{2} + 8 x + 7$ | $2$ | $2$ | $2$ | $C_2^2$ | $$[\ ]_{2}^{2}$$ |
| 3.2.2.2a1.2 | $x^{4} + 4 x^{3} + 8 x^{2} + 8 x + 7$ | $2$ | $2$ | $2$ | $C_2^2$ | $$[\ ]_{2}^{2}$$ | |
|
\(67\)
| 67.2.4.6a1.2 | $x^{8} + 252 x^{7} + 23822 x^{6} + 1001700 x^{5} + 15848241 x^{4} + 2003400 x^{3} + 95288 x^{2} + 2016 x + 83$ | $4$ | $2$ | $6$ | $D_4$ | $$[\ ]_{4}^{2}$$ |