Normalized defining polynomial
\( x^{8} - 3x^{7} - 14x^{6} + 72x^{5} - 44x^{4} - 1020x^{3} - 1992x^{2} - 2352x - 1376 \)
Invariants
| Degree: | $8$ |
| |
| Signature: | $[4, 2]$ |
| |
| Discriminant: |
\(99714188227072\)
\(\medspace = 2^{9}\cdot 41^{7}\)
|
| |
| Root discriminant: | \(56.21\) |
| |
| Galois root discriminant: | $2^{2}41^{7/8}\approx 103.09696152933505$ | ||
| Ramified primes: |
\(2\), \(41\)
|
| |
| Discriminant root field: | \(\Q(\sqrt{82}) \) | ||
| $\Aut(K/\Q)$: | $C_2$ |
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
| This field has no CM subfields. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $\frac{1}{2}a^{3}-\frac{1}{2}a^{2}$, $\frac{1}{4}a^{4}-\frac{1}{4}a^{3}-\frac{1}{2}a^{2}-\frac{1}{2}a$, $\frac{1}{16}a^{5}-\frac{1}{16}a^{4}-\frac{1}{8}a^{3}-\frac{3}{8}a^{2}-\frac{1}{2}a-\frac{1}{2}$, $\frac{1}{32}a^{6}-\frac{1}{32}a^{5}-\frac{1}{16}a^{4}-\frac{3}{16}a^{3}+\frac{1}{4}a^{2}-\frac{1}{4}a$, $\frac{1}{880672}a^{7}-\frac{495}{880672}a^{6}+\frac{11679}{440336}a^{5}+\frac{16689}{220168}a^{4}-\frac{18631}{110084}a^{3}-\frac{106421}{220168}a^{2}-\frac{12049}{27521}a+\frac{22039}{55042}$
| Monogenic: | No | |
| Index: | Not computed | |
| Inessential primes: | $2$ |
Class group and class number
| Ideal class group: | $C_{2}$, which has order $2$ (assuming GRH) |
| |
| Narrow class group: | $C_{4}$, which has order $4$ (assuming GRH) |
|
Unit group
| Rank: | $5$ |
| |
| Torsion generator: |
\( -1 \)
(order $2$)
|
| |
| Fundamental units: |
$\frac{4143}{440336}a^{7}-\frac{14231}{440336}a^{6}-\frac{11671}{110084}a^{5}+\frac{64817}{110084}a^{4}-\frac{121261}{110084}a^{3}-\frac{731329}{110084}a^{2}-\frac{211994}{27521}a-\frac{254790}{27521}$, $\frac{671}{440336}a^{7}-\frac{1893}{440336}a^{6}-\frac{1719}{55042}a^{5}+\frac{22065}{220168}a^{4}+\frac{13787}{110084}a^{3}-\frac{78311}{55042}a^{2}-\frac{97494}{27521}a-\frac{73171}{27521}$, $\frac{3387}{440336}a^{7}-\frac{25305}{440336}a^{6}+\frac{1137}{27521}a^{5}+\frac{187665}{220168}a^{4}-\frac{352861}{110084}a^{3}-\frac{167821}{55042}a^{2}+\frac{392654}{27521}a+\frac{394435}{27521}$, $\frac{96125}{27521}a^{7}-\frac{6381449}{440336}a^{6}-\frac{14216749}{440336}a^{5}+\frac{31787937}{110084}a^{4}-\frac{106801377}{220168}a^{3}-\frac{331235061}{110084}a^{2}-\frac{96159027}{27521}a-\frac{114442279}{27521}$, $\frac{234505}{440336}a^{7}-\frac{1207321}{440336}a^{6}-\frac{37334}{27521}a^{5}+\frac{1135896}{27521}a^{4}-\frac{12399613}{110084}a^{3}-\frac{31587745}{110084}a^{2}-\frac{11443128}{27521}a-\frac{9242514}{27521}$
|
| |
| Regulator: | \( 108013.947264 \) (assuming GRH) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{4}\cdot(2\pi)^{2}\cdot 108013.947264 \cdot 2}{2\cdot\sqrt{99714188227072}}\cr\approx \mathstrut & 6.83252261121 \end{aligned}\] (assuming GRH)
Galois group
$C_2\wr D_4$ (as 8T35):
| A solvable group of order 128 |
| The 20 conjugacy class representatives for $C_2 \wr C_2\wr C_2$ |
| Character table for $C_2 \wr C_2\wr C_2$ |
Intermediate fields
| \(\Q(\sqrt{41}) \), 4.2.551368.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 8 siblings: | data not computed |
| Degree 16 siblings: | data not computed |
| Degree 32 siblings: | data not computed |
| Minimal sibling: | This field is its own minimal sibling |
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/padicField/3.4.0.1}{4} }^{2}$ | ${\href{/padicField/5.4.0.1}{4} }{,}\,{\href{/padicField/5.2.0.1}{2} }^{2}$ | ${\href{/padicField/7.4.0.1}{4} }{,}\,{\href{/padicField/7.2.0.1}{2} }^{2}$ | ${\href{/padicField/11.4.0.1}{4} }^{2}$ | ${\href{/padicField/13.2.0.1}{2} }^{4}$ | ${\href{/padicField/17.8.0.1}{8} }$ | ${\href{/padicField/19.4.0.1}{4} }^{2}$ | ${\href{/padicField/23.4.0.1}{4} }{,}\,{\href{/padicField/23.2.0.1}{2} }{,}\,{\href{/padicField/23.1.0.1}{1} }^{2}$ | ${\href{/padicField/29.2.0.1}{2} }^{4}$ | ${\href{/padicField/31.4.0.1}{4} }{,}\,{\href{/padicField/31.2.0.1}{2} }{,}\,{\href{/padicField/31.1.0.1}{1} }^{2}$ | ${\href{/padicField/37.4.0.1}{4} }{,}\,{\href{/padicField/37.1.0.1}{1} }^{4}$ | R | ${\href{/padicField/43.2.0.1}{2} }^{3}{,}\,{\href{/padicField/43.1.0.1}{1} }^{2}$ | ${\href{/padicField/47.4.0.1}{4} }{,}\,{\href{/padicField/47.2.0.1}{2} }^{2}$ | ${\href{/padicField/53.4.0.1}{4} }^{2}$ | ${\href{/padicField/59.4.0.1}{4} }{,}\,{\href{/padicField/59.2.0.1}{2} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(2\)
| $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ |
| $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ | |
| 2.1.2.3a1.1 | $x^{2} + 2$ | $2$ | $1$ | $3$ | $C_2$ | $$[3]$$ | |
| 2.1.2.3a1.1 | $x^{2} + 2$ | $2$ | $1$ | $3$ | $C_2$ | $$[3]$$ | |
| 2.1.2.3a1.3 | $x^{2} + 4 x + 2$ | $2$ | $1$ | $3$ | $C_2$ | $$[3]$$ | |
|
\(41\)
| 41.1.8.7a1.7 | $x^{8} + 1476$ | $8$ | $1$ | $7$ | $C_8$ | $$[\ ]_{8}$$ |