Normalized defining polynomial
\( x^{8} - 6x^{6} + 13x^{4} - 16x^{2} + 13 \)
Invariants
Degree: | $8$ |
| |
Signature: | $[4, 2]$ |
| |
Discriminant: |
\(37930467328\)
\(\medspace = 2^{16}\cdot 13\cdot 211^{2}\)
|
| |
Root discriminant: | \(21.01\) |
| |
Galois root discriminant: | $2^{5/2}13^{1/2}211^{1/2}\approx 296.2701469942593$ | ||
Ramified primes: |
\(2\), \(13\), \(211\)
|
| |
Discriminant root field: | \(\Q(\sqrt{13}) \) | ||
$\Aut(K/\Q)$: | $C_2$ |
| |
This field is not Galois over $\Q$. | |||
This is not a CM field. | |||
This field has no CM subfields. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$
Monogenic: | Yes | |
Index: | $1$ | |
Inessential primes: | None |
Class group and class number
Ideal class group: | Trivial group, which has order $1$ |
| |
Narrow class group: | $C_{2}$, which has order $2$ |
|
Unit group
Rank: | $5$ |
| |
Torsion generator: |
\( -1 \)
(order $2$)
|
| |
Fundamental units: |
$a^{6}-4a^{4}+5a^{2}-6$, $a^{6}-4a^{4}+5a^{2}-5$, $a^{7}+a^{6}-4a^{5}-4a^{4}+6a^{3}+6a^{2}-7a-8$, $a^{6}-4a^{4}+6a^{2}+a-6$, $a^{6}-a^{5}-5a^{4}+3a^{3}+9a^{2}-9$
|
| |
Regulator: | \( 272.865988608 \) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{4}\cdot(2\pi)^{2}\cdot 272.865988608 \cdot 1}{2\cdot\sqrt{37930467328}}\cr\approx \mathstrut & 0.442491602664 \end{aligned}\]
Galois group
$C_2\wr S_4$ (as 8T44):
A solvable group of order 384 |
The 20 conjugacy class representatives for $C_2 \wr S_4$ |
Character table for $C_2 \wr S_4$ |
Intermediate fields
4.2.3376.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Degree 8 siblings: | data not computed |
Degree 16 siblings: | data not computed |
Degree 24 siblings: | data not computed |
Degree 32 siblings: | data not computed |
Minimal sibling: | This field is its own minimal sibling |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | R | ${\href{/padicField/3.4.0.1}{4} }^{2}$ | ${\href{/padicField/5.6.0.1}{6} }{,}\,{\href{/padicField/5.1.0.1}{1} }^{2}$ | ${\href{/padicField/7.4.0.1}{4} }{,}\,{\href{/padicField/7.2.0.1}{2} }^{2}$ | ${\href{/padicField/11.3.0.1}{3} }^{2}{,}\,{\href{/padicField/11.2.0.1}{2} }$ | R | ${\href{/padicField/17.4.0.1}{4} }^{2}$ | ${\href{/padicField/19.6.0.1}{6} }{,}\,{\href{/padicField/19.1.0.1}{1} }^{2}$ | ${\href{/padicField/23.4.0.1}{4} }{,}\,{\href{/padicField/23.2.0.1}{2} }{,}\,{\href{/padicField/23.1.0.1}{1} }^{2}$ | ${\href{/padicField/29.4.0.1}{4} }{,}\,{\href{/padicField/29.2.0.1}{2} }{,}\,{\href{/padicField/29.1.0.1}{1} }^{2}$ | ${\href{/padicField/31.8.0.1}{8} }$ | ${\href{/padicField/37.6.0.1}{6} }{,}\,{\href{/padicField/37.1.0.1}{1} }^{2}$ | ${\href{/padicField/41.8.0.1}{8} }$ | ${\href{/padicField/43.6.0.1}{6} }{,}\,{\href{/padicField/43.2.0.1}{2} }$ | ${\href{/padicField/47.6.0.1}{6} }{,}\,{\href{/padicField/47.1.0.1}{1} }^{2}$ | ${\href{/padicField/53.4.0.1}{4} }^{2}$ | ${\href{/padicField/59.4.0.1}{4} }{,}\,{\href{/padicField/59.2.0.1}{2} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(2\)
| 2.2.4.16b2.8 | $x^{8} + 4 x^{7} + 10 x^{6} + 16 x^{5} + 21 x^{4} + 24 x^{3} + 24 x^{2} + 20 x + 17$ | $4$ | $2$ | $16$ | $C_8:C_2$ | $$[2, 3, 3]^{2}$$ |
\(13\)
| 13.1.2.1a1.1 | $x^{2} + 13$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ |
13.3.1.0a1.1 | $x^{3} + 2 x + 11$ | $1$ | $3$ | $0$ | $C_3$ | $$[\ ]^{3}$$ | |
13.3.1.0a1.1 | $x^{3} + 2 x + 11$ | $1$ | $3$ | $0$ | $C_3$ | $$[\ ]^{3}$$ | |
\(211\)
| Deg $2$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | |
Deg $2$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | ||
Deg $4$ | $2$ | $2$ | $2$ |