Normalized defining polynomial
\( x^{8} - 155236x^{4} - 61162984x^{2} + 3012276962 \)
Invariants
| Degree: | $8$ |
| |
| Signature: | $[4, 2]$ |
| |
| Discriminant: |
\(3234407759571058688\)
\(\medspace = 2^{31}\cdot 197^{4}\)
|
| |
| Root discriminant: | \(205.93\) |
| |
| Galois root discriminant: | $2^{141/32}197^{1/2}\approx 297.60932268990877$ | ||
| Ramified primes: |
\(2\), \(197\)
|
| |
| Discriminant root field: | \(\Q(\sqrt{2}) \) | ||
| $\Aut(K/\Q)$: | $C_2$ |
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
| This field has no CM subfields. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $\frac{1}{197}a^{2}$, $\frac{1}{197}a^{3}$, $\frac{1}{38809}a^{4}$, $\frac{1}{38809}a^{5}$, $\frac{1}{68808357}a^{6}+\frac{4}{349281}a^{4}+\frac{1}{591}a^{2}+\frac{4}{9}$, $\frac{1}{68808357}a^{7}+\frac{4}{349281}a^{5}+\frac{1}{591}a^{3}+\frac{4}{9}a$
| Monogenic: | Not computed | |
| Index: | $1$ | |
| Inessential primes: | None |
Class group and class number
| Ideal class group: | $C_{2}$, which has order $2$ (assuming GRH) |
| |
| Narrow class group: | $C_{2}$, which has order $2$ (assuming GRH) |
|
Unit group
| Rank: | $5$ |
| |
| Torsion generator: |
\( -1 \)
(order $2$)
|
| |
| Fundamental units: |
$\frac{2}{68808357}a^{6}-\frac{1}{349281}a^{4}-\frac{4}{591}a^{2}-\frac{19}{9}$, $\frac{2}{68808357}a^{6}-\frac{1}{349281}a^{4}-\frac{1}{591}a^{2}-\frac{19}{9}$, $\frac{19741061293}{68808357}a^{7}-\frac{106935732094}{68808357}a^{6}+\frac{6433180894}{349281}a^{5}+\frac{20924444171}{349281}a^{4}-\frac{24118009043}{591}a^{3}+\frac{183153464990}{591}a^{2}-\frac{168700520195}{9}a+\frac{1104424718771}{9}$, $\frac{113472617312}{22936119}a^{7}-\frac{9293539023749}{68808357}a^{6}-\frac{405647228653}{116427}a^{5}+\frac{618661982530}{349281}a^{4}+\frac{111393156535}{197}a^{3}+\frac{21747398266288}{591}a^{2}-\frac{55948102489}{3}a-\frac{14605367709401}{9}$, $\frac{99\cdots 55}{7645373}a^{7}+\frac{20\cdots 84}{68808357}a^{6}+\frac{26\cdots 04}{38809}a^{5}+\frac{53\cdots 38}{349281}a^{4}+\frac{29\cdots 69}{197}a^{3}+\frac{19\cdots 10}{591}a^{2}-53\!\cdots\!69a-\frac{14\cdots 11}{9}$
|
| |
| Regulator: | \( 1918555.16096 \) (assuming GRH) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{4}\cdot(2\pi)^{2}\cdot 1918555.16096 \cdot 2}{2\cdot\sqrt{3234407759571058688}}\cr\approx \mathstrut & 0.673839746814 \end{aligned}\] (assuming GRH)
Galois group
$C_2\wr C_4$ (as 8T28):
| A solvable group of order 64 |
| The 13 conjugacy class representatives for $(((C_4 \times C_2): C_2):C_2):C_2$ |
| Character table for $(((C_4 \times C_2): C_2):C_2):C_2$ |
Intermediate fields
| \(\Q(\sqrt{2}) \), 4.2.2048.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 8 siblings: | data not computed |
| Degree 16 siblings: | data not computed |
| Degree 32 siblings: | data not computed |
| Minimal sibling: | 8.2.3234407759571058688.1 |
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/padicField/3.4.0.1}{4} }{,}\,{\href{/padicField/3.2.0.1}{2} }^{2}$ | ${\href{/padicField/5.8.0.1}{8} }$ | ${\href{/padicField/7.4.0.1}{4} }{,}\,{\href{/padicField/7.2.0.1}{2} }{,}\,{\href{/padicField/7.1.0.1}{1} }^{2}$ | ${\href{/padicField/11.4.0.1}{4} }{,}\,{\href{/padicField/11.2.0.1}{2} }^{2}$ | ${\href{/padicField/13.8.0.1}{8} }$ | ${\href{/padicField/17.2.0.1}{2} }^{4}$ | ${\href{/padicField/19.4.0.1}{4} }{,}\,{\href{/padicField/19.2.0.1}{2} }^{2}$ | ${\href{/padicField/23.4.0.1}{4} }{,}\,{\href{/padicField/23.2.0.1}{2} }{,}\,{\href{/padicField/23.1.0.1}{1} }^{2}$ | ${\href{/padicField/29.8.0.1}{8} }$ | ${\href{/padicField/31.2.0.1}{2} }^{2}{,}\,{\href{/padicField/31.1.0.1}{1} }^{4}$ | ${\href{/padicField/37.8.0.1}{8} }$ | ${\href{/padicField/41.4.0.1}{4} }^{2}$ | ${\href{/padicField/43.4.0.1}{4} }{,}\,{\href{/padicField/43.2.0.1}{2} }^{2}$ | ${\href{/padicField/47.2.0.1}{2} }^{2}{,}\,{\href{/padicField/47.1.0.1}{1} }^{4}$ | ${\href{/padicField/53.8.0.1}{8} }$ | ${\href{/padicField/59.4.0.1}{4} }{,}\,{\href{/padicField/59.2.0.1}{2} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(2\)
| 2.1.8.31a1.202 | $x^{8} + 16 x^{7} + 16 x^{5} + 4 x^{4} + 16 x^{3} + 8 x^{2} + 18$ | $8$ | $1$ | $31$ | $(((C_4 \times C_2): C_2):C_2):C_2$ | $$[2, 3, \frac{7}{2}, 4, \frac{17}{4}, 5]$$ |
|
\(197\)
| 197.4.2.4a1.1 | $x^{8} + 32 x^{6} + 248 x^{5} + 260 x^{4} + 3968 x^{3} + 15440 x^{2} + 693 x + 4$ | $2$ | $4$ | $4$ | $C_8$ | $$[\ ]_{2}^{4}$$ |