Normalized defining polynomial
\( x^{8} - 12x^{6} + 44x^{4} - 248x^{2} + 116 \)
Invariants
| Degree: | $8$ |
| |
| Signature: | $[4, 2]$ |
| |
| Discriminant: |
\(1900544000000\)
\(\medspace = 2^{22}\cdot 5^{6}\cdot 29\)
|
| |
| Root discriminant: | \(34.27\) |
| |
| Galois root discriminant: | $2^{55/16}5^{3/4}29^{1/2}\approx 195.0819608860828$ | ||
| Ramified primes: |
\(2\), \(5\), \(29\)
|
| |
| Discriminant root field: | \(\Q(\sqrt{29}) \) | ||
| $\Aut(K/\Q)$: | $C_2$ |
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
| This field has no CM subfields. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{20}a^{4}+\frac{1}{5}a^{2}-\frac{3}{10}$, $\frac{1}{20}a^{5}+\frac{1}{5}a^{3}-\frac{3}{10}a$, $\frac{1}{120}a^{6}-\frac{1}{60}a^{4}-\frac{1}{4}a^{2}-\frac{11}{30}$, $\frac{1}{120}a^{7}-\frac{1}{60}a^{5}-\frac{1}{4}a^{3}-\frac{11}{30}a$
| Monogenic: | Not computed | |
| Index: | $1$ | |
| Inessential primes: | None |
Class group and class number
| Ideal class group: | Trivial group, which has order $1$ |
| |
| Narrow class group: | $C_{2}$, which has order $2$ |
|
Unit group
| Rank: | $5$ |
| |
| Torsion generator: |
\( -1 \)
(order $2$)
|
| |
| Fundamental units: |
$\frac{1}{120}a^{6}-\frac{7}{60}a^{4}+\frac{7}{20}a^{2}-\frac{23}{30}$, $\frac{1}{12}a^{7}-\frac{7}{120}a^{6}+\frac{29}{30}a^{5}+\frac{2}{3}a^{4}-\frac{33}{10}a^{3}-\frac{41}{20}a^{2}+\frac{283}{15}a+\frac{199}{15}$, $\frac{1}{120}a^{6}-\frac{1}{10}a^{5}+\frac{1}{6}a^{4}+\frac{3}{5}a^{3}-\frac{43}{20}a^{2}+\frac{3}{5}a+\frac{37}{15}$, $\frac{1}{20}a^{7}+\frac{7}{30}a^{6}+\frac{1}{10}a^{5}-\frac{34}{15}a^{4}+\frac{9}{2}a^{3}-\frac{6}{5}a^{2}-\frac{19}{5}a+\frac{23}{15}$, $\frac{1}{6}a^{6}-\frac{29}{15}a^{4}+\frac{33}{5}a^{2}-\frac{581}{15}$
|
| |
| Regulator: | \( 2049.0169539291155 \) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{4}\cdot(2\pi)^{2}\cdot 2049.0169539291155 \cdot 1}{2\cdot\sqrt{1900544000000}}\cr\approx \mathstrut & 0.469414295352976 \end{aligned}\]
Galois group
$C_2\wr D_4$ (as 8T35):
| A solvable group of order 128 |
| The 20 conjugacy class representatives for $C_2 \wr C_2\wr C_2$ |
| Character table for $C_2 \wr C_2\wr C_2$ |
Intermediate fields
| \(\Q(\sqrt{5}) \), 4.2.8000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 8 siblings: | data not computed |
| Degree 16 siblings: | data not computed |
| Degree 32 siblings: | data not computed |
| Minimal sibling: | This field is its own minimal sibling |
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/padicField/3.4.0.1}{4} }{,}\,{\href{/padicField/3.2.0.1}{2} }^{2}$ | R | ${\href{/padicField/7.2.0.1}{2} }^{4}$ | ${\href{/padicField/11.2.0.1}{2} }^{3}{,}\,{\href{/padicField/11.1.0.1}{1} }^{2}$ | ${\href{/padicField/13.4.0.1}{4} }^{2}$ | ${\href{/padicField/17.8.0.1}{8} }$ | ${\href{/padicField/19.2.0.1}{2} }^{3}{,}\,{\href{/padicField/19.1.0.1}{1} }^{2}$ | ${\href{/padicField/23.4.0.1}{4} }^{2}$ | R | ${\href{/padicField/31.4.0.1}{4} }{,}\,{\href{/padicField/31.1.0.1}{1} }^{4}$ | ${\href{/padicField/37.8.0.1}{8} }$ | ${\href{/padicField/41.4.0.1}{4} }{,}\,{\href{/padicField/41.2.0.1}{2} }^{2}$ | ${\href{/padicField/43.4.0.1}{4} }{,}\,{\href{/padicField/43.2.0.1}{2} }^{2}$ | ${\href{/padicField/47.4.0.1}{4} }{,}\,{\href{/padicField/47.2.0.1}{2} }^{2}$ | ${\href{/padicField/53.4.0.1}{4} }^{2}$ | ${\href{/padicField/59.2.0.1}{2} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(2\)
| 2.2.4.22a1.47 | $x^{8} + 4 x^{7} + 14 x^{6} + 32 x^{5} + 51 x^{4} + 56 x^{3} + 50 x^{2} + 36 x + 15$ | $4$ | $2$ | $22$ | $(((C_4 \times C_2): C_2):C_2):C_2$ | $$[2, 2, 3, \frac{7}{2}, 4]^{2}$$ |
|
\(5\)
| 5.2.4.6a1.2 | $x^{8} + 16 x^{7} + 104 x^{6} + 352 x^{5} + 664 x^{4} + 704 x^{3} + 416 x^{2} + 128 x + 21$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $$[\ ]_{4}^{2}$$ |
|
\(29\)
| $\Q_{29}$ | $x + 27$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ |
| $\Q_{29}$ | $x + 27$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ | |
| $\Q_{29}$ | $x + 27$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ | |
| $\Q_{29}$ | $x + 27$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ | |
| $\Q_{29}$ | $x + 27$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ | |
| $\Q_{29}$ | $x + 27$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ | |
| 29.1.2.1a1.1 | $x^{2} + 29$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ |