Normalized defining polynomial
\( x^{8} + 3x^{6} + 55x^{4} + 293x^{2} - 288 \)
Invariants
| Degree: | $8$ |
| |
| Signature: | $[2, 3]$ |
| |
| Discriminant: |
\(-86385732896768\)
\(\medspace = -\,2^{11}\cdot 59^{6}\)
|
| |
| Root discriminant: | \(55.21\) |
| |
| Galois root discriminant: | $2^{2}59^{3/4}\approx 85.15281314195066$ | ||
| Ramified primes: |
\(2\), \(59\)
|
| |
| Discriminant root field: | \(\Q(\sqrt{-2}) \) | ||
| $\Aut(K/\Q)$: | $C_2$ |
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
| This field has no CM subfields. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $\frac{1}{2}a^{3}-\frac{1}{2}a$, $\frac{1}{4}a^{4}-\frac{1}{4}a^{3}+\frac{1}{4}a^{2}-\frac{1}{4}a$, $\frac{1}{4}a^{5}-\frac{1}{4}a$, $\frac{1}{248}a^{6}-\frac{9}{124}a^{4}-\frac{1}{4}a^{3}+\frac{61}{248}a^{2}-\frac{1}{4}a-\frac{15}{31}$, $\frac{1}{1488}a^{7}-\frac{1}{496}a^{6}+\frac{7}{62}a^{5}-\frac{11}{124}a^{4}-\frac{125}{1488}a^{3}+\frac{125}{496}a^{2}+\frac{125}{372}a-\frac{8}{31}$
| Monogenic: | No | |
| Index: | Not computed | |
| Inessential primes: | $2$ |
Class group and class number
| Ideal class group: | Trivial group, which has order $1$ (assuming GRH) |
| |
| Narrow class group: | $C_{2}$, which has order $2$ (assuming GRH) |
|
Unit group
| Rank: | $4$ |
| |
| Torsion generator: |
\( -1 \)
(order $2$)
|
| |
| Fundamental units: |
$\frac{7}{248}a^{6}-\frac{8}{31}a^{4}-\frac{3}{2}a^{3}-\frac{751}{248}a^{2}-\frac{15}{2}a-\frac{167}{31}$, $\frac{15}{62}a^{6}-\frac{42}{31}a^{4}+\frac{357}{62}a^{2}-\frac{125}{31}$, $\frac{4505}{1488}a^{7}+\frac{3143}{496}a^{6}+\frac{531}{31}a^{5}+\frac{1279}{124}a^{4}+\frac{134003}{1488}a^{3}-\frac{7235}{496}a^{2}+\frac{161737}{372}a+\frac{16929}{31}$, $\frac{289321}{31}a^{7}+\frac{1087321}{124}a^{6}+\frac{2190563}{62}a^{5}+\frac{2130883}{62}a^{4}+\frac{33659153}{62}a^{3}+\frac{62231977}{124}a^{2}+\frac{99303253}{31}a+\frac{90978889}{31}$
|
| |
| Regulator: | \( 198074.543071 \) (assuming GRH) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{2}\cdot(2\pi)^{3}\cdot 198074.543071 \cdot 1}{2\cdot\sqrt{86385732896768}}\cr\approx \mathstrut & 10.5724892542 \end{aligned}\] (assuming GRH)
Galois group
$C_2\wr S_4$ (as 8T44):
| A solvable group of order 384 |
| The 20 conjugacy class representatives for $C_2 \wr S_4$ |
| Character table for $C_2 \wr S_4$ |
Intermediate fields
| 4.2.1643032.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 8 siblings: | data not computed |
| Degree 16 siblings: | data not computed |
| Degree 24 siblings: | data not computed |
| Degree 32 siblings: | data not computed |
| Minimal sibling: | 8.2.21596433224192.2 |
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/padicField/3.4.0.1}{4} }{,}\,{\href{/padicField/3.2.0.1}{2} }{,}\,{\href{/padicField/3.1.0.1}{1} }^{2}$ | ${\href{/padicField/5.8.0.1}{8} }$ | ${\href{/padicField/7.6.0.1}{6} }{,}\,{\href{/padicField/7.1.0.1}{1} }^{2}$ | ${\href{/padicField/11.6.0.1}{6} }{,}\,{\href{/padicField/11.2.0.1}{2} }$ | ${\href{/padicField/13.6.0.1}{6} }{,}\,{\href{/padicField/13.1.0.1}{1} }^{2}$ | ${\href{/padicField/17.6.0.1}{6} }{,}\,{\href{/padicField/17.2.0.1}{2} }$ | ${\href{/padicField/19.4.0.1}{4} }^{2}$ | ${\href{/padicField/23.8.0.1}{8} }$ | ${\href{/padicField/29.4.0.1}{4} }{,}\,{\href{/padicField/29.1.0.1}{1} }^{4}$ | ${\href{/padicField/31.2.0.1}{2} }^{3}{,}\,{\href{/padicField/31.1.0.1}{1} }^{2}$ | ${\href{/padicField/37.3.0.1}{3} }^{2}{,}\,{\href{/padicField/37.2.0.1}{2} }$ | ${\href{/padicField/41.3.0.1}{3} }^{2}{,}\,{\href{/padicField/41.1.0.1}{1} }^{2}$ | ${\href{/padicField/43.6.0.1}{6} }{,}\,{\href{/padicField/43.2.0.1}{2} }$ | ${\href{/padicField/47.8.0.1}{8} }$ | ${\href{/padicField/53.8.0.1}{8} }$ | R |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(2\)
| 2.1.2.3a1.4 | $x^{2} + 4 x + 10$ | $2$ | $1$ | $3$ | $C_2$ | $$[3]$$ |
| 2.1.2.2a1.2 | $x^{2} + 2 x + 6$ | $2$ | $1$ | $2$ | $C_2$ | $$[2]$$ | |
| 2.1.2.3a1.4 | $x^{2} + 4 x + 10$ | $2$ | $1$ | $3$ | $C_2$ | $$[3]$$ | |
| 2.1.2.3a1.4 | $x^{2} + 4 x + 10$ | $2$ | $1$ | $3$ | $C_2$ | $$[3]$$ | |
|
\(59\)
| 59.2.4.6a1.2 | $x^{8} + 232 x^{7} + 20192 x^{6} + 781840 x^{5} + 11397256 x^{4} + 1563680 x^{3} + 80768 x^{2} + 1856 x + 75$ | $4$ | $2$ | $6$ | $D_4$ | $$[\ ]_{4}^{2}$$ |