Normalized defining polynomial
\( x^{8} + 20x^{6} + 134x^{4} + 312x^{2} - 428 \)
Invariants
| Degree: | $8$ |
| |
| Signature: | $[2, 3]$ |
| |
| Discriminant: |
\(-5138202755072\)
\(\medspace = -\,2^{22}\cdot 107^{3}\)
|
| |
| Root discriminant: | \(38.80\) |
| |
| Galois root discriminant: | $2^{11/4}107^{1/2}\approx 69.5864012402242$ | ||
| Ramified primes: |
\(2\), \(107\)
|
| |
| Discriminant root field: | \(\Q(\sqrt{-107}) \) | ||
| $\Aut(K/\Q)$: | $C_2$ |
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
| This field has no CM subfields. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{10}a^{4}-\frac{1}{5}a^{2}+\frac{1}{5}$, $\frac{1}{10}a^{5}-\frac{1}{5}a^{3}+\frac{1}{5}a$, $\frac{1}{250}a^{6}+\frac{2}{125}a^{4}+\frac{7}{25}a^{2}-\frac{29}{125}$, $\frac{1}{250}a^{7}+\frac{2}{125}a^{5}+\frac{7}{25}a^{3}-\frac{29}{125}a$
| Monogenic: | Not computed | |
| Index: | $1$ | |
| Inessential primes: | None |
Class group and class number
| Ideal class group: | $C_{2}$, which has order $2$ |
| |
| Narrow class group: | $C_{4}$, which has order $4$ |
|
Unit group
| Rank: | $4$ |
| |
| Torsion generator: |
\( -1 \)
(order $2$)
|
| |
| Fundamental units: |
$\frac{1}{125}a^{6}+\frac{33}{250}a^{4}+\frac{9}{25}a^{2}-\frac{158}{125}$, $\frac{1}{125}a^{6}+\frac{33}{250}a^{4}+\frac{9}{25}a^{2}-\frac{33}{125}$, $\frac{41}{125}a^{7}-\frac{17}{125}a^{6}+\frac{839}{125}a^{5}-\frac{1011}{250}a^{4}+\frac{1154}{25}a^{3}-\frac{988}{25}a^{2}+\frac{15347}{125}a-\frac{15764}{125}$, $\frac{17179846}{125}a^{7}-\frac{69763436}{125}a^{6}+\frac{343980584}{125}a^{5}-\frac{932822994}{125}a^{4}+\frac{309725964}{25}a^{3}-\frac{384059154}{25}a^{2}-\frac{1772342418}{125}a+\frac{2682809163}{125}$
|
| |
| Regulator: | \( 2843.67268928 \) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{2}\cdot(2\pi)^{3}\cdot 2843.67268928 \cdot 2}{2\cdot\sqrt{5138202755072}}\cr\approx \mathstrut & 1.24472549373 \end{aligned}\]
Galois group
$\GL(2,3)$ (as 8T23):
| A solvable group of order 48 |
| The 8 conjugacy class representatives for $\textrm{GL(2,3)}$ |
| Character table for $\textrm{GL(2,3)}$ |
Intermediate fields
| 4.2.6848.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 16 sibling: | deg 16 |
| Degree 24 sibling: | deg 24 |
| Arithmetically equivalent sibling: | 8.2.5138202755072.8 |
| Minimal sibling: | 8.2.5138202755072.8 |
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/padicField/3.3.0.1}{3} }^{2}{,}\,{\href{/padicField/3.1.0.1}{1} }^{2}$ | ${\href{/padicField/5.2.0.1}{2} }^{3}{,}\,{\href{/padicField/5.1.0.1}{1} }^{2}$ | ${\href{/padicField/7.8.0.1}{8} }$ | ${\href{/padicField/11.3.0.1}{3} }^{2}{,}\,{\href{/padicField/11.1.0.1}{1} }^{2}$ | ${\href{/padicField/13.3.0.1}{3} }^{2}{,}\,{\href{/padicField/13.1.0.1}{1} }^{2}$ | ${\href{/padicField/17.8.0.1}{8} }$ | ${\href{/padicField/19.6.0.1}{6} }{,}\,{\href{/padicField/19.2.0.1}{2} }$ | ${\href{/padicField/23.6.0.1}{6} }{,}\,{\href{/padicField/23.2.0.1}{2} }$ | ${\href{/padicField/29.4.0.1}{4} }^{2}$ | ${\href{/padicField/31.8.0.1}{8} }$ | ${\href{/padicField/37.3.0.1}{3} }^{2}{,}\,{\href{/padicField/37.1.0.1}{1} }^{2}$ | ${\href{/padicField/41.3.0.1}{3} }^{2}{,}\,{\href{/padicField/41.1.0.1}{1} }^{2}$ | ${\href{/padicField/43.8.0.1}{8} }$ | ${\href{/padicField/47.4.0.1}{4} }^{2}$ | ${\href{/padicField/53.3.0.1}{3} }^{2}{,}\,{\href{/padicField/53.1.0.1}{1} }^{2}$ | ${\href{/padicField/59.2.0.1}{2} }^{3}{,}\,{\href{/padicField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(2\)
| 2.2.4.22a1.72 | $x^{8} + 12 x^{7} + 42 x^{6} + 88 x^{5} + 127 x^{4} + 128 x^{3} + 102 x^{2} + 76 x + 23$ | $4$ | $2$ | $22$ | $C_8$ | $$[3, 4]^{2}$$ |
|
\(107\)
| $\Q_{107}$ | $x + 105$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ |
| $\Q_{107}$ | $x + 105$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ | |
| 107.1.2.1a1.1 | $x^{2} + 107$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | |
| 107.1.2.1a1.1 | $x^{2} + 107$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | |
| 107.1.2.1a1.1 | $x^{2} + 107$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ |