Normalized defining polynomial
\( x^{8} - 14x^{6} + 62x^{4} - 66x^{2} - 99 \)
Invariants
Degree: | $8$ |
| |
Signature: | $[2, 3]$ |
| |
Discriminant: |
\(-490659840000\)
\(\medspace = -\,2^{16}\cdot 3^{2}\cdot 5^{4}\cdot 11^{3}\)
|
| |
Root discriminant: | \(28.93\) |
| |
Galois root discriminant: | $2^{5/2}3^{1/2}5^{1/2}11^{3/4}\approx 132.33207809551135$ | ||
Ramified primes: |
\(2\), \(3\), \(5\), \(11\)
|
| |
Discriminant root field: | \(\Q(\sqrt{-11}) \) | ||
$\Aut(K/\Q)$: | $C_2$ |
| |
This field is not Galois over $\Q$. | |||
This is not a CM field. | |||
This field has no CM subfields. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2}a^{4}-\frac{1}{2}$, $\frac{1}{2}a^{5}-\frac{1}{2}a$, $\frac{1}{6}a^{6}+\frac{1}{6}a^{4}-\frac{1}{6}a^{2}-\frac{1}{2}$, $\frac{1}{6}a^{7}+\frac{1}{6}a^{5}-\frac{1}{6}a^{3}-\frac{1}{2}a$
Monogenic: | Not computed | |
Index: | $1$ | |
Inessential primes: | None |
Class group and class number
Ideal class group: | Trivial group, which has order $1$ |
| |
Narrow class group: | $C_{2}$, which has order $2$ |
|
Unit group
Rank: | $4$ |
| |
Torsion generator: |
\( -1 \)
(order $2$)
|
| |
Fundamental units: |
$\frac{1}{6}a^{6}-\frac{4}{3}a^{4}+\frac{11}{6}a^{2}+3$, $\frac{1}{2}a^{6}-4a^{4}+\frac{13}{2}a^{2}+8$, $\frac{1}{6}a^{7}-\frac{5}{2}a^{6}-\frac{5}{6}a^{5}+\frac{45}{2}a^{4}+\frac{5}{6}a^{3}-\frac{85}{2}a^{2}+\frac{1}{2}a-\frac{97}{2}$, $\frac{167}{3}a^{7}+125a^{6}-\frac{1507}{3}a^{5}-1144a^{4}+\frac{2647}{3}a^{3}+2057a^{2}+1045a+2419$
|
| |
Regulator: | \( 703.649106206 \) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{2}\cdot(2\pi)^{3}\cdot 703.649106206 \cdot 1}{2\cdot\sqrt{490659840000}}\cr\approx \mathstrut & 0.498351172798 \end{aligned}\]
Galois group
A solvable group of order 64 |
The 16 conjugacy class representatives for $(C_4^2 : C_2):C_2$ |
Character table for $(C_4^2 : C_2):C_2$ |
Intermediate fields
\(\Q(\sqrt{5}) \), 4.2.4400.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Degree 8 siblings: | data not computed |
Degree 16 siblings: | data not computed |
Degree 32 siblings: | data not computed |
Minimal sibling: | This field is its own minimal sibling |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | R | R | R | ${\href{/padicField/7.8.0.1}{8} }$ | R | ${\href{/padicField/13.8.0.1}{8} }$ | ${\href{/padicField/17.8.0.1}{8} }$ | ${\href{/padicField/19.4.0.1}{4} }{,}\,{\href{/padicField/19.1.0.1}{1} }^{4}$ | ${\href{/padicField/23.2.0.1}{2} }^{4}$ | ${\href{/padicField/29.2.0.1}{2} }^{3}{,}\,{\href{/padicField/29.1.0.1}{1} }^{2}$ | ${\href{/padicField/31.1.0.1}{1} }^{8}$ | ${\href{/padicField/37.2.0.1}{2} }^{4}$ | ${\href{/padicField/41.2.0.1}{2} }^{3}{,}\,{\href{/padicField/41.1.0.1}{1} }^{2}$ | ${\href{/padicField/43.8.0.1}{8} }$ | ${\href{/padicField/47.4.0.1}{4} }^{2}$ | ${\href{/padicField/53.2.0.1}{2} }^{4}$ | ${\href{/padicField/59.2.0.1}{2} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(2\)
| 2.2.4.16b2.8 | $x^{8} + 4 x^{7} + 10 x^{6} + 16 x^{5} + 21 x^{4} + 24 x^{3} + 24 x^{2} + 20 x + 17$ | $4$ | $2$ | $16$ | $C_8:C_2$ | $$[2, 3, 3]^{2}$$ |
\(3\)
| 3.2.2.2a1.1 | $x^{4} + 4 x^{3} + 8 x^{2} + 11 x + 4$ | $2$ | $2$ | $2$ | $C_4$ | $$[\ ]_{2}^{2}$$ |
3.4.1.0a1.1 | $x^{4} + 2 x^{3} + 2$ | $1$ | $4$ | $0$ | $C_4$ | $$[\ ]^{4}$$ | |
\(5\)
| 5.2.2.2a1.2 | $x^{4} + 8 x^{3} + 20 x^{2} + 16 x + 9$ | $2$ | $2$ | $2$ | $C_2^2$ | $$[\ ]_{2}^{2}$$ |
5.2.2.2a1.2 | $x^{4} + 8 x^{3} + 20 x^{2} + 16 x + 9$ | $2$ | $2$ | $2$ | $C_2^2$ | $$[\ ]_{2}^{2}$$ | |
\(11\)
| $\Q_{11}$ | $x + 9$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ |
$\Q_{11}$ | $x + 9$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ | |
11.2.1.0a1.1 | $x^{2} + 7 x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | |
11.1.4.3a1.1 | $x^{4} + 11$ | $4$ | $1$ | $3$ | $D_{4}$ | $$[\ ]_{4}^{2}$$ |