Normalized defining polynomial
\( x^{8} + 2358x^{4} - 81875 \)
Invariants
| Degree: | $8$ |
| |
| Signature: | $[2, 3]$ |
| |
| Discriminant: |
\(-43388935988891549696\)
\(\medspace = -\,2^{16}\cdot 131^{7}\)
|
| |
| Root discriminant: | \(284.89\) |
| |
| Galois root discriminant: | $2^{2}131^{7/8}\approx 284.88683149045704$ | ||
| Ramified primes: |
\(2\), \(131\)
|
| |
| Discriminant root field: | \(\Q(\sqrt{-131}) \) | ||
| $\Aut(K/\Q)$: | $C_2$ |
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
| This field has no CM subfields. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{212}a^{4}-\frac{1}{2}a^{3}-\frac{1}{2}a+\frac{13}{212}$, $\frac{1}{1060}a^{5}-\frac{1}{2}a^{2}+\frac{13}{1060}a-\frac{1}{2}$, $\frac{1}{5300}a^{6}-\frac{1}{2}a^{3}+\frac{2133}{5300}a^{2}-\frac{1}{2}a$, $\frac{1}{26500}a^{7}+\frac{12733}{26500}a^{3}-\frac{1}{2}a^{2}-\frac{1}{2}$
| Monogenic: | Not computed | |
| Index: | $1$ | |
| Inessential primes: | None |
Class group and class number
| Ideal class group: | Trivial group, which has order $1$ (assuming GRH) |
| |
| Narrow class group: | $C_{2}$, which has order $2$ (assuming GRH) |
|
Unit group
| Rank: | $4$ |
| |
| Torsion generator: |
\( -1 \)
(order $2$)
|
| |
| Fundamental units: |
$\frac{927}{106}a^{4}-\frac{31727}{106}$, $\frac{4233499}{5300}a^{6}+\frac{989907}{212}a^{4}+\frac{10129448267}{5300}a^{2}+\frac{2370419667}{212}$, $\frac{51438327}{26500}a^{7}-\frac{5285241}{1060}a^{6}-\frac{101441}{1060}a^{5}+\frac{102543}{53}a^{4}+\frac{123051805441}{26500}a^{3}-\frac{12643567633}{1060}a^{2}-\frac{242929303}{1060}a+\frac{245372248}{53}$, $\frac{245895862271}{26500}a^{7}+\frac{128579331987}{5300}a^{6}+\frac{38652286067}{530}a^{5}+\frac{12109422721}{53}a^{4}+\frac{589648735239893}{26500}a^{3}+\frac{284910628038621}{5300}a^{2}+\frac{34326844483998}{265}a+\frac{33021983183573}{106}$
|
| |
| Regulator: | \( 4830924.57066 \) (assuming GRH) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{2}\cdot(2\pi)^{3}\cdot 4830924.57066 \cdot 1}{2\cdot\sqrt{43388935988891549696}}\cr\approx \mathstrut & 0.363839928080 \end{aligned}\] (assuming GRH)
Galois group
$\SD_{16}$ (as 8T8):
| A solvable group of order 16 |
| The 7 conjugacy class representatives for $QD_{16}$ |
| Character table for $QD_{16}$ |
Intermediate fields
| \(\Q(\sqrt{131}) \), 4.2.143877824.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | deg 16 |
| Minimal sibling: | This field is its own minimal sibling |
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/padicField/3.4.0.1}{4} }^{2}$ | ${\href{/padicField/5.4.0.1}{4} }^{2}$ | ${\href{/padicField/7.4.0.1}{4} }^{2}$ | ${\href{/padicField/11.4.0.1}{4} }^{2}$ | ${\href{/padicField/13.4.0.1}{4} }^{2}$ | ${\href{/padicField/17.8.0.1}{8} }$ | ${\href{/padicField/19.2.0.1}{2} }^{3}{,}\,{\href{/padicField/19.1.0.1}{1} }^{2}$ | ${\href{/padicField/23.2.0.1}{2} }^{3}{,}\,{\href{/padicField/23.1.0.1}{1} }^{2}$ | ${\href{/padicField/29.8.0.1}{8} }$ | ${\href{/padicField/31.2.0.1}{2} }^{3}{,}\,{\href{/padicField/31.1.0.1}{1} }^{2}$ | ${\href{/padicField/37.8.0.1}{8} }$ | ${\href{/padicField/41.4.0.1}{4} }^{2}$ | ${\href{/padicField/43.4.0.1}{4} }^{2}$ | ${\href{/padicField/47.2.0.1}{2} }^{3}{,}\,{\href{/padicField/47.1.0.1}{1} }^{2}$ | ${\href{/padicField/53.2.0.1}{2} }^{4}$ | ${\href{/padicField/59.4.0.1}{4} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(2\)
| 2.1.8.16c1.6 | $x^{8} + 2 x^{6} + 4 x^{3} + 4 x + 6$ | $8$ | $1$ | $16$ | $QD_{16}$ | $$[2, 2, \frac{5}{2}]^{2}$$ |
|
\(131\)
| 131.1.8.7a1.2 | $x^{8} + 262$ | $8$ | $1$ | $7$ | $QD_{16}$ | $$[\ ]_{8}^{2}$$ |