Normalized defining polynomial
\( x^{8} - 4x^{7} + 6x^{6} + 6x^{5} - 18x^{4} + 8x^{3} - 47x^{2} + 78x - 18 \)
Invariants
| Degree: | $8$ |
| |
| Signature: | $[2, 3]$ |
| |
| Discriminant: |
\(-172774898244\)
\(\medspace = -\,2^{2}\cdot 3^{2}\cdot 13^{2}\cdot 73^{4}\)
|
| |
| Root discriminant: | \(25.39\) |
| |
| Galois root discriminant: | $2\cdot 3^{1/2}13^{1/2}73^{1/2}\approx 106.7145725756328$ | ||
| Ramified primes: |
\(2\), \(3\), \(13\), \(73\)
|
| |
| Discriminant root field: | \(\Q(\sqrt{-1}) \) | ||
| $\Aut(K/\Q)$: | $C_2$ |
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
| This field has no CM subfields. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $\frac{1}{2}a^{5}-\frac{1}{2}a^{2}$, $\frac{1}{2}a^{6}-\frac{1}{2}a^{3}$, $\frac{1}{882}a^{7}+\frac{17}{126}a^{6}+\frac{5}{49}a^{5}+\frac{17}{294}a^{4}+\frac{9}{98}a^{3}-\frac{86}{441}a^{2}+\frac{29}{63}a-\frac{43}{147}$
| Monogenic: | No | |
| Index: | Not computed | |
| Inessential primes: | $2$ |
Class group and class number
| Ideal class group: | Trivial group, which has order $1$ |
| |
| Narrow class group: | $C_{2}$, which has order $2$ |
|
Unit group
| Rank: | $4$ |
| |
| Torsion generator: |
\( -1 \)
(order $2$)
|
| |
| Fundamental units: |
$\frac{118}{441}a^{7}-\frac{83}{126}a^{6}+\frac{57}{98}a^{5}+\frac{389}{147}a^{4}-\frac{81}{98}a^{3}+\frac{421}{882}a^{2}-\frac{716}{63}a+\frac{436}{147}$, $\frac{1783}{882}a^{7}-\frac{311}{63}a^{6}+\frac{435}{98}a^{5}+\frac{5615}{294}a^{4}-\frac{331}{49}a^{3}+\frac{5111}{882}a^{2}-\frac{5434}{63}a+\frac{3446}{147}$, $\frac{25}{42}a^{7}-\frac{25}{6}a^{6}+\frac{99}{14}a^{5}+\frac{19}{14}a^{4}-\frac{403}{14}a^{3}+\frac{89}{42}a^{2}-\frac{103}{3}a+\frac{822}{7}$, $\frac{3790}{441}a^{7}-\frac{2747}{126}a^{6}+\frac{1957}{98}a^{5}+\frac{11951}{147}a^{4}-\frac{3957}{98}a^{3}+\frac{17917}{882}a^{2}-\frac{22856}{63}a+\frac{14512}{147}$
|
| |
| Regulator: | \( 1596.13664872 \) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{2}\cdot(2\pi)^{3}\cdot 1596.13664872 \cdot 1}{2\cdot\sqrt{172774898244}}\cr\approx \mathstrut & 1.90501915690 \end{aligned}\]
Galois group
$C_2\wr D_4$ (as 8T35):
| A solvable group of order 128 |
| The 20 conjugacy class representatives for $C_2 \wr C_2\wr C_2$ |
| Character table for $C_2 \wr C_2\wr C_2$ |
Intermediate fields
| \(\Q(\sqrt{73}) \), 4.2.15987.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 8 siblings: | data not computed |
| Degree 16 siblings: | data not computed |
| Degree 32 siblings: | data not computed |
| Minimal sibling: | This field is its own minimal sibling |
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/padicField/5.4.0.1}{4} }^{2}$ | ${\href{/padicField/7.4.0.1}{4} }{,}\,{\href{/padicField/7.2.0.1}{2} }^{2}$ | ${\href{/padicField/11.8.0.1}{8} }$ | R | ${\href{/padicField/17.4.0.1}{4} }^{2}$ | ${\href{/padicField/19.4.0.1}{4} }{,}\,{\href{/padicField/19.2.0.1}{2} }^{2}$ | ${\href{/padicField/23.2.0.1}{2} }^{3}{,}\,{\href{/padicField/23.1.0.1}{1} }^{2}$ | ${\href{/padicField/29.4.0.1}{4} }^{2}$ | ${\href{/padicField/31.4.0.1}{4} }{,}\,{\href{/padicField/31.2.0.1}{2} }^{2}$ | ${\href{/padicField/37.2.0.1}{2} }^{4}$ | ${\href{/padicField/41.2.0.1}{2} }^{2}{,}\,{\href{/padicField/41.1.0.1}{1} }^{4}$ | ${\href{/padicField/43.4.0.1}{4} }{,}\,{\href{/padicField/43.2.0.1}{2} }^{2}$ | ${\href{/padicField/47.8.0.1}{8} }$ | ${\href{/padicField/53.4.0.1}{4} }^{2}$ | ${\href{/padicField/59.8.0.1}{8} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(2\)
| 2.2.1.0a1.1 | $x^{2} + x + 1$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ |
| 2.1.2.2a1.2 | $x^{2} + 2 x + 6$ | $2$ | $1$ | $2$ | $C_2$ | $$[2]$$ | |
| 2.2.1.0a1.1 | $x^{2} + x + 1$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | |
| 2.2.1.0a1.1 | $x^{2} + x + 1$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | |
|
\(3\)
| 3.1.2.1a1.2 | $x^{2} + 6$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ |
| 3.1.2.1a1.2 | $x^{2} + 6$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | |
| 3.4.1.0a1.1 | $x^{4} + 2 x^{3} + 2$ | $1$ | $4$ | $0$ | $C_4$ | $$[\ ]^{4}$$ | |
|
\(13\)
| 13.2.1.0a1.1 | $x^{2} + 12 x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ |
| 13.2.1.0a1.1 | $x^{2} + 12 x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | |
| 13.2.2.2a1.2 | $x^{4} + 24 x^{3} + 148 x^{2} + 48 x + 17$ | $2$ | $2$ | $2$ | $C_2^2$ | $$[\ ]_{2}^{2}$$ | |
|
\(73\)
| 73.4.2.4a1.2 | $x^{8} + 32 x^{6} + 112 x^{5} + 266 x^{4} + 1792 x^{3} + 3296 x^{2} + 560 x + 98$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $$[\ ]_{2}^{4}$$ |