Normalized defining polynomial
\( x^{8} - 697x^{4} - 328 \)
Invariants
| Degree: | $8$ |
| |
| Signature: | $[2, 3]$ |
| |
| Discriminant: |
\(-1595427011633152\)
\(\medspace = -\,2^{13}\cdot 41^{7}\)
|
| |
| Root discriminant: | \(79.50\) |
| |
| Galois root discriminant: | $2^{3}41^{7/8}\approx 206.1939230586701$ | ||
| Ramified primes: |
\(2\), \(41\)
|
| |
| Discriminant root field: | \(\Q(\sqrt{-82}) \) | ||
| $\Aut(K/\Q)$: | $C_2$ |
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
| This field has no CM subfields. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{218}a^{4}-\frac{1}{2}a^{2}-\frac{38}{109}$, $\frac{1}{218}a^{5}-\frac{1}{2}a^{3}-\frac{38}{109}a$, $\frac{1}{436}a^{6}-\frac{1}{436}a^{5}-\frac{1}{436}a^{4}-\frac{1}{4}a^{3}+\frac{71}{218}a^{2}+\frac{19}{109}a+\frac{19}{109}$, $\frac{1}{436}a^{7}-\frac{185}{436}a^{3}$
| Monogenic: | No | |
| Index: | Not computed | |
| Inessential primes: | $2$ |
Class group and class number
| Ideal class group: | $C_{2}\times C_{2}$, which has order $4$ (assuming GRH) |
| |
| Narrow class group: | $C_{2}\times C_{4}$, which has order $8$ (assuming GRH) |
|
Unit group
| Rank: | $4$ |
| |
| Torsion generator: |
\( -1 \)
(order $2$)
|
| |
| Fundamental units: |
$\frac{7}{218}a^{7}-\frac{5}{218}a^{6}-\frac{11}{218}a^{5}-\frac{11}{218}a^{4}-\frac{2446}{109}a^{3}+\frac{1716}{109}a^{2}+\frac{3688}{109}a+\frac{3143}{109}$, $\frac{10}{109}a^{4}+\frac{3}{109}$, $\frac{2}{109}a^{6}+\frac{77}{109}a^{4}+\frac{611}{109}a^{2}-\frac{729}{109}$, $\frac{10503}{109}a^{7}+\frac{27329}{109}a^{6}-\frac{139028}{109}a^{5}+\frac{660373}{109}a^{4}-\frac{10778595}{109}a^{3}-\frac{1315748}{109}a^{2}+\frac{5773616}{109}a+\frac{8059835}{109}$
|
| |
| Regulator: | \( 64016.0444849 \) (assuming GRH) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{2}\cdot(2\pi)^{3}\cdot 64016.0444849 \cdot 4}{2\cdot\sqrt{1595427011633152}}\cr\approx \mathstrut & 3.18038691191 \end{aligned}\] (assuming GRH)
Galois group
| A solvable group of order 64 |
| The 16 conjugacy class representatives for $(C_4^2 : C_2):C_2$ |
| Character table for $(C_4^2 : C_2):C_2$ |
Intermediate fields
| \(\Q(\sqrt{41}) \), 4.2.551368.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 8 siblings: | data not computed |
| Degree 16 siblings: | data not computed |
| Degree 32 siblings: | data not computed |
| Minimal sibling: | This field is its own minimal sibling |
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/padicField/3.8.0.1}{8} }$ | ${\href{/padicField/5.4.0.1}{4} }{,}\,{\href{/padicField/5.2.0.1}{2} }^{2}$ | ${\href{/padicField/7.4.0.1}{4} }^{2}$ | ${\href{/padicField/11.8.0.1}{8} }$ | ${\href{/padicField/13.4.0.1}{4} }^{2}$ | ${\href{/padicField/17.8.0.1}{8} }$ | ${\href{/padicField/19.8.0.1}{8} }$ | ${\href{/padicField/23.2.0.1}{2} }^{3}{,}\,{\href{/padicField/23.1.0.1}{1} }^{2}$ | ${\href{/padicField/29.2.0.1}{2} }^{4}$ | ${\href{/padicField/31.2.0.1}{2} }^{3}{,}\,{\href{/padicField/31.1.0.1}{1} }^{2}$ | ${\href{/padicField/37.4.0.1}{4} }{,}\,{\href{/padicField/37.2.0.1}{2} }^{2}$ | R | ${\href{/padicField/43.2.0.1}{2} }^{2}{,}\,{\href{/padicField/43.1.0.1}{1} }^{4}$ | ${\href{/padicField/47.4.0.1}{4} }^{2}$ | ${\href{/padicField/53.4.0.1}{4} }^{2}$ | ${\href{/padicField/59.2.0.1}{2} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(2\)
| $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ |
| $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ | |
| 2.1.2.2a1.1 | $x^{2} + 2 x + 2$ | $2$ | $1$ | $2$ | $C_2$ | $$[2]$$ | |
| 2.1.4.11a1.2 | $x^{4} + 18$ | $4$ | $1$ | $11$ | $D_{4}$ | $$[2, 3, 4]$$ | |
|
\(41\)
| 41.1.8.7a1.7 | $x^{8} + 1476$ | $8$ | $1$ | $7$ | $C_8$ | $$[\ ]_{8}$$ |