Normalized defining polynomial
\( x^{8} - 2x^{7} - 5x^{6} - 2x^{5} + 63x^{4} - 64x^{3} + 46x^{2} - 16x + 4 \)
Invariants
Degree: | $8$ |
| |
Signature: | $[0, 4]$ |
| |
Discriminant: |
\(796594176\)
\(\medspace = 2^{12}\cdot 3^{4}\cdot 7^{4}\)
|
| |
Root discriminant: | \(12.96\) |
| |
Galois root discriminant: | $2^{3/2}3^{1/2}7^{1/2}\approx 12.96148139681572$ | ||
Ramified primes: |
\(2\), \(3\), \(7\)
|
| |
Discriminant root field: | \(\Q\) | ||
$\Aut(K/\Q)$ $=$ $\Gal(K/\Q)$: | $C_2^3$ |
| |
This field is Galois and abelian over $\Q$. | |||
Conductor: | \(168=2^{3}\cdot 3\cdot 7\) | ||
Dirichlet character group: | $\lbrace$$\chi_{168}(1,·)$, $\chi_{168}(139,·)$, $\chi_{168}(97,·)$, $\chi_{168}(41,·)$, $\chi_{168}(43,·)$, $\chi_{168}(113,·)$, $\chi_{168}(83,·)$, $\chi_{168}(155,·)$$\rbrace$ | ||
This is a CM field. | |||
Reflex fields: | \(\Q(\sqrt{-3}) \), \(\Q(\sqrt{-7}) \), \(\Q(\sqrt{-2}) \), \(\Q(\sqrt{-42}) \), 8.0.796594176.1$^{4}$ |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{2}a^{6}-\frac{1}{2}a^{4}-\frac{1}{2}a^{2}$, $\frac{1}{19430}a^{7}+\frac{1152}{9715}a^{6}+\frac{8629}{19430}a^{5}+\frac{1076}{9715}a^{4}+\frac{1585}{3886}a^{3}-\frac{4322}{9715}a^{2}+\frac{1081}{9715}a-\frac{3977}{9715}$
Monogenic: | No | |
Index: | Not computed | |
Inessential primes: | $2$ |
Class group and class number
Ideal class group: | Trivial group, which has order $1$ |
| |
Narrow class group: | Trivial group, which has order $1$ |
| |
Relative class number: | $1$ |
Unit group
Rank: | $3$ |
| |
Torsion generator: |
\( -\frac{908}{9715} a^{7} + \frac{3101}{19430} a^{6} + \frac{4873}{9715} a^{5} + \frac{7113}{19430} a^{4} - \frac{11075}{1943} a^{3} + \frac{85499}{19430} a^{2} - \frac{39526}{9715} a + \frac{13702}{9715} \)
(order $6$)
|
| |
Fundamental units: |
$\frac{5728}{9715}a^{7}-\frac{20461}{19430}a^{6}-\frac{32153}{9715}a^{5}-\frac{32503}{19430}a^{4}+\frac{73075}{1943}a^{3}-\frac{564139}{19430}a^{2}+\frac{123606}{9715}a-\frac{16592}{9715}$, $\frac{4207}{19430}a^{7}-\frac{1321}{9715}a^{6}-\frac{31897}{19430}a^{5}-\frac{19888}{9715}a^{4}+\frac{50237}{3886}a^{3}+\frac{52401}{9715}a^{2}-\frac{66858}{9715}a+\frac{36851}{9715}$, $\frac{15147}{9715}a^{7}-\frac{17022}{9715}a^{6}-\frac{99297}{9715}a^{5}-\frac{104346}{9715}a^{4}+\frac{182929}{1943}a^{3}-\frac{127908}{9715}a^{2}+\frac{47124}{9715}a+\frac{74197}{9715}$
|
| |
Regulator: | \( 48.849423381 \) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{4}\cdot 48.849423381 \cdot 1}{6\cdot\sqrt{796594176}}\cr\approx \mathstrut & 0.44958219285 \end{aligned}\]
Galois group
An abelian group of order 8 |
The 8 conjugacy class representatives for $C_2^3$ |
Character table for $C_2^3$ |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | R | R | ${\href{/padicField/5.2.0.1}{2} }^{4}$ | R | ${\href{/padicField/11.2.0.1}{2} }^{4}$ | ${\href{/padicField/13.2.0.1}{2} }^{4}$ | ${\href{/padicField/17.2.0.1}{2} }^{4}$ | ${\href{/padicField/19.2.0.1}{2} }^{4}$ | ${\href{/padicField/23.2.0.1}{2} }^{4}$ | ${\href{/padicField/29.2.0.1}{2} }^{4}$ | ${\href{/padicField/31.2.0.1}{2} }^{4}$ | ${\href{/padicField/37.2.0.1}{2} }^{4}$ | ${\href{/padicField/41.2.0.1}{2} }^{4}$ | ${\href{/padicField/43.1.0.1}{1} }^{8}$ | ${\href{/padicField/47.2.0.1}{2} }^{4}$ | ${\href{/padicField/53.2.0.1}{2} }^{4}$ | ${\href{/padicField/59.2.0.1}{2} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(2\)
| 2.2.2.6a1.1 | $x^{4} + 2 x^{3} + 3 x^{2} + 2 x + 3$ | $2$ | $2$ | $6$ | $C_2^2$ | $$[3]^{2}$$ |
2.2.2.6a1.1 | $x^{4} + 2 x^{3} + 3 x^{2} + 2 x + 3$ | $2$ | $2$ | $6$ | $C_2^2$ | $$[3]^{2}$$ | |
\(3\)
| 3.2.2.2a1.2 | $x^{4} + 4 x^{3} + 8 x^{2} + 8 x + 7$ | $2$ | $2$ | $2$ | $C_2^2$ | $$[\ ]_{2}^{2}$$ |
3.2.2.2a1.2 | $x^{4} + 4 x^{3} + 8 x^{2} + 8 x + 7$ | $2$ | $2$ | $2$ | $C_2^2$ | $$[\ ]_{2}^{2}$$ | |
\(7\)
| 7.2.2.2a1.2 | $x^{4} + 12 x^{3} + 42 x^{2} + 36 x + 16$ | $2$ | $2$ | $2$ | $C_2^2$ | $$[\ ]_{2}^{2}$$ |
7.2.2.2a1.2 | $x^{4} + 12 x^{3} + 42 x^{2} + 36 x + 16$ | $2$ | $2$ | $2$ | $C_2^2$ | $$[\ ]_{2}^{2}$$ |