Properties

Label 8.0.796594176.1
Degree $8$
Signature $[0, 4]$
Discriminant $796594176$
Root discriminant \(12.96\)
Ramified primes $2,3,7$
Class number $1$
Class group trivial
Galois group $C_2^3$ (as 8T3)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^8 - 2*x^7 - 5*x^6 - 2*x^5 + 63*x^4 - 64*x^3 + 46*x^2 - 16*x + 4)
 
gp: K = bnfinit(y^8 - 2*y^7 - 5*y^6 - 2*y^5 + 63*y^4 - 64*y^3 + 46*y^2 - 16*y + 4, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^8 - 2*x^7 - 5*x^6 - 2*x^5 + 63*x^4 - 64*x^3 + 46*x^2 - 16*x + 4);
 
oscar: Qx, x = PolynomialRing(QQ); K, a = NumberField(x^8 - 2*x^7 - 5*x^6 - 2*x^5 + 63*x^4 - 64*x^3 + 46*x^2 - 16*x + 4)
 

\( x^{8} - 2x^{7} - 5x^{6} - 2x^{5} + 63x^{4} - 64x^{3} + 46x^{2} - 16x + 4 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $8$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[0, 4]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(796594176\) \(\medspace = 2^{12}\cdot 3^{4}\cdot 7^{4}\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(12.96\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $2^{3/2}3^{1/2}7^{1/2}\approx 12.96148139681572$
Ramified primes:   \(2\), \(3\), \(7\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q\)
$\card{ \Gal(K/\Q) }$:  $8$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is Galois and abelian over $\Q$.
Conductor:  \(168=2^{3}\cdot 3\cdot 7\)
Dirichlet character group:    $\lbrace$$\chi_{168}(1,·)$, $\chi_{168}(139,·)$, $\chi_{168}(97,·)$, $\chi_{168}(41,·)$, $\chi_{168}(43,·)$, $\chi_{168}(113,·)$, $\chi_{168}(83,·)$, $\chi_{168}(155,·)$$\rbrace$
This is a CM field.
Reflex fields:  \(\Q(\sqrt{-3}) \), \(\Q(\sqrt{-7}) \), \(\Q(\sqrt{-2}) \), \(\Q(\sqrt{-42}) \), 8.0.796594176.1$^{4}$

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{2}a^{6}-\frac{1}{2}a^{4}-\frac{1}{2}a^{2}$, $\frac{1}{19430}a^{7}+\frac{1152}{9715}a^{6}+\frac{8629}{19430}a^{5}+\frac{1076}{9715}a^{4}+\frac{1585}{3886}a^{3}-\frac{4322}{9715}a^{2}+\frac{1081}{9715}a-\frac{3977}{9715}$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  No
Index:  Not computed
Inessential primes:  $2$

Class group and class number

Trivial group, which has order $1$

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $3$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( -\frac{908}{9715} a^{7} + \frac{3101}{19430} a^{6} + \frac{4873}{9715} a^{5} + \frac{7113}{19430} a^{4} - \frac{11075}{1943} a^{3} + \frac{85499}{19430} a^{2} - \frac{39526}{9715} a + \frac{13702}{9715} \)  (order $6$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:   $\frac{5728}{9715}a^{7}-\frac{20461}{19430}a^{6}-\frac{32153}{9715}a^{5}-\frac{32503}{19430}a^{4}+\frac{73075}{1943}a^{3}-\frac{564139}{19430}a^{2}+\frac{123606}{9715}a-\frac{16592}{9715}$, $\frac{4207}{19430}a^{7}-\frac{1321}{9715}a^{6}-\frac{31897}{19430}a^{5}-\frac{19888}{9715}a^{4}+\frac{50237}{3886}a^{3}+\frac{52401}{9715}a^{2}-\frac{66858}{9715}a+\frac{36851}{9715}$, $\frac{15147}{9715}a^{7}-\frac{17022}{9715}a^{6}-\frac{99297}{9715}a^{5}-\frac{104346}{9715}a^{4}+\frac{182929}{1943}a^{3}-\frac{127908}{9715}a^{2}+\frac{47124}{9715}a+\frac{74197}{9715}$ Copy content Toggle raw display
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 48.849423381 \)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{4}\cdot 48.849423381 \cdot 1}{6\cdot\sqrt{796594176}}\cr\approx \mathstrut & 0.44958219285 \end{aligned}\]

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^8 - 2*x^7 - 5*x^6 - 2*x^5 + 63*x^4 - 64*x^3 + 46*x^2 - 16*x + 4)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^8 - 2*x^7 - 5*x^6 - 2*x^5 + 63*x^4 - 64*x^3 + 46*x^2 - 16*x + 4, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^8 - 2*x^7 - 5*x^6 - 2*x^5 + 63*x^4 - 64*x^3 + 46*x^2 - 16*x + 4);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^8 - 2*x^7 - 5*x^6 - 2*x^5 + 63*x^4 - 64*x^3 + 46*x^2 - 16*x + 4);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$C_2^3$ (as 8T3):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
An abelian group of order 8
The 8 conjugacy class representatives for $C_2^3$
Character table for $C_2^3$

Intermediate fields

\(\Q(\sqrt{-42}) \), \(\Q(\sqrt{-2}) \), \(\Q(\sqrt{21}) \), \(\Q(\sqrt{6}) \), \(\Q(\sqrt{-7}) \), \(\Q(\sqrt{-3}) \), \(\Q(\sqrt{14}) \), \(\Q(\sqrt{-2}, \sqrt{21})\), \(\Q(\sqrt{6}, \sqrt{-7})\), \(\Q(\sqrt{-3}, \sqrt{14})\), \(\Q(\sqrt{-2}, \sqrt{-3})\), \(\Q(\sqrt{-2}, \sqrt{-7})\), \(\Q(\sqrt{6}, \sqrt{14})\), \(\Q(\sqrt{-3}, \sqrt{-7})\)

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type R R ${\href{/padicField/5.2.0.1}{2} }^{4}$ R ${\href{/padicField/11.2.0.1}{2} }^{4}$ ${\href{/padicField/13.2.0.1}{2} }^{4}$ ${\href{/padicField/17.2.0.1}{2} }^{4}$ ${\href{/padicField/19.2.0.1}{2} }^{4}$ ${\href{/padicField/23.2.0.1}{2} }^{4}$ ${\href{/padicField/29.2.0.1}{2} }^{4}$ ${\href{/padicField/31.2.0.1}{2} }^{4}$ ${\href{/padicField/37.2.0.1}{2} }^{4}$ ${\href{/padicField/41.2.0.1}{2} }^{4}$ ${\href{/padicField/43.1.0.1}{1} }^{8}$ ${\href{/padicField/47.2.0.1}{2} }^{4}$ ${\href{/padicField/53.2.0.1}{2} }^{4}$ ${\href{/padicField/59.2.0.1}{2} }^{4}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(2\) Copy content Toggle raw display 2.4.6.2$x^{4} + 4 x^{3} + 16 x^{2} + 24 x + 12$$2$$2$$6$$C_2^2$$[3]^{2}$
2.4.6.2$x^{4} + 4 x^{3} + 16 x^{2} + 24 x + 12$$2$$2$$6$$C_2^2$$[3]^{2}$
\(3\) Copy content Toggle raw display 3.4.2.1$x^{4} + 4 x^{3} + 14 x^{2} + 20 x + 13$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
3.4.2.1$x^{4} + 4 x^{3} + 14 x^{2} + 20 x + 13$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
\(7\) Copy content Toggle raw display 7.4.2.1$x^{4} + 12 x^{3} + 56 x^{2} + 120 x + 268$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
7.4.2.1$x^{4} + 12 x^{3} + 56 x^{2} + 120 x + 268$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$