Normalized defining polynomial
\( x^{8} - 4x^{7} - 62x^{6} + 200x^{5} + 963x^{4} - 2264x^{3} + 3382x^{2} - 2216x + 664 \)
Invariants
| Degree: | $8$ |
| |
| Signature: | $[0, 4]$ |
| |
| Discriminant: |
\(524698762940416\)
\(\medspace = 2^{12}\cdot 71^{6}\)
|
| |
| Root discriminant: | \(69.18\) |
| |
| Galois root discriminant: | $2^{3/2}71^{3/4}\approx 69.18130579256344$ | ||
| Ramified primes: |
\(2\), \(71\)
|
| |
| Discriminant root field: | \(\Q\) | ||
| $\Aut(K/\Q)$ $=$ $\Gal(K/\Q)$: | $D_4$ |
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
| Maximal CM subfield: | \(\Q(\sqrt{-2}, \sqrt{-71})\) | ||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{6}a^{4}-\frac{1}{3}a^{3}-\frac{1}{2}a^{2}-\frac{1}{3}a+\frac{1}{3}$, $\frac{1}{6}a^{5}-\frac{1}{6}a^{3}-\frac{1}{3}a^{2}-\frac{1}{3}a-\frac{1}{3}$, $\frac{1}{1068}a^{6}-\frac{1}{356}a^{5}-\frac{47}{1068}a^{4}+\frac{33}{356}a^{3}-\frac{35}{267}a^{2}+\frac{15}{178}a-\frac{29}{267}$, $\frac{1}{231756}a^{7}+\frac{5}{11036}a^{6}-\frac{9449}{231756}a^{5}-\frac{1595}{231756}a^{4}-\frac{41093}{115878}a^{3}-\frac{1208}{19313}a^{2}-\frac{3028}{57939}a-\frac{26806}{57939}$
| Monogenic: | No | |
| Index: | Not computed | |
| Inessential primes: | $2$, $3$ |
Class group and class number
| Ideal class group: | $C_{5}\times C_{105}$, which has order $525$ |
| |
| Narrow class group: | $C_{5}\times C_{105}$, which has order $525$ |
|
Unit group
| Rank: | $3$ |
| |
| Torsion generator: |
\( -1 \)
(order $2$)
|
| |
| Fundamental units: |
$\frac{81}{77252}a^{7}-\frac{53}{16554}a^{6}-\frac{2609}{38626}a^{5}+\frac{8837}{57939}a^{4}+\frac{85775}{77252}a^{3}-\frac{212969}{115878}a^{2}+\frac{42633}{38626}a-\frac{16444}{57939}$, $\frac{81}{77252}a^{7}+\frac{161}{11036}a^{6}-\frac{9341}{77252}a^{5}-\frac{235685}{231756}a^{4}+\frac{410003}{115878}a^{3}+\frac{721205}{38626}a^{2}-\frac{1079315}{57939}a+\frac{1795289}{57939}$, $\frac{243}{77252}a^{7}-\frac{349}{33108}a^{6}-\frac{15437}{77252}a^{5}+\frac{116243}{231756}a^{4}+\frac{62541}{19313}a^{3}-\frac{623717}{115878}a^{2}+\frac{139574}{19313}a-\frac{158917}{57939}$
|
| |
| Regulator: | \( 280.361079044 \) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{4}\cdot 280.361079044 \cdot 525}{2\cdot\sqrt{524698762940416}}\cr\approx \mathstrut & 5.00739076274 \end{aligned}\]
Galois group
| A solvable group of order 8 |
| The 5 conjugacy class representatives for $D_4$ |
| Character table for $D_4$ |
Intermediate fields
| \(\Q(\sqrt{-2}) \), \(\Q(\sqrt{142}) \), \(\Q(\sqrt{-71}) \), \(\Q(\sqrt{-2}, \sqrt{-71})\), 4.2.22906304.1 x2, 4.0.2863288.1 x2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 4 siblings: | 4.0.2863288.1, 4.2.22906304.1 |
| Minimal sibling: | 4.0.2863288.1 |
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/padicField/3.2.0.1}{2} }^{4}$ | ${\href{/padicField/5.2.0.1}{2} }^{4}$ | ${\href{/padicField/7.2.0.1}{2} }^{4}$ | ${\href{/padicField/11.4.0.1}{4} }^{2}$ | ${\href{/padicField/13.2.0.1}{2} }^{4}$ | ${\href{/padicField/17.4.0.1}{4} }^{2}$ | ${\href{/padicField/19.2.0.1}{2} }^{4}$ | ${\href{/padicField/23.2.0.1}{2} }^{4}$ | ${\href{/padicField/29.2.0.1}{2} }^{4}$ | ${\href{/padicField/31.2.0.1}{2} }^{4}$ | ${\href{/padicField/37.2.0.1}{2} }^{4}$ | ${\href{/padicField/41.4.0.1}{4} }^{2}$ | ${\href{/padicField/43.2.0.1}{2} }^{4}$ | ${\href{/padicField/47.2.0.1}{2} }^{4}$ | ${\href{/padicField/53.2.0.1}{2} }^{4}$ | ${\href{/padicField/59.4.0.1}{4} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(2\)
| 2.1.2.3a1.1 | $x^{2} + 2$ | $2$ | $1$ | $3$ | $C_2$ | $$[3]$$ |
| 2.1.2.3a1.1 | $x^{2} + 2$ | $2$ | $1$ | $3$ | $C_2$ | $$[3]$$ | |
| 2.1.2.3a1.1 | $x^{2} + 2$ | $2$ | $1$ | $3$ | $C_2$ | $$[3]$$ | |
| 2.1.2.3a1.1 | $x^{2} + 2$ | $2$ | $1$ | $3$ | $C_2$ | $$[3]$$ | |
|
\(71\)
| 71.2.4.6a1.2 | $x^{8} + 276 x^{7} + 28594 x^{6} + 1319832 x^{5} + 23067339 x^{4} + 9238824 x^{3} + 1401106 x^{2} + 94668 x + 2472$ | $4$ | $2$ | $6$ | $D_4$ | $$[\ ]_{4}^{2}$$ |