Normalized defining polynomial
\( x^{8} + 3x^{6} + 5x^{4} + 12x^{2} + 16 \)
Invariants
| Degree: | $8$ |
| |
| Signature: | $[0, 4]$ |
| |
| Discriminant: |
\(49787136\)
\(\medspace = 2^{8}\cdot 3^{4}\cdot 7^{4}\)
|
| |
| Root discriminant: | \(9.17\) |
| |
| Galois root discriminant: | $2\cdot 3^{1/2}7^{1/2}\approx 9.16515138991168$ | ||
| Ramified primes: |
\(2\), \(3\), \(7\)
|
| |
| Discriminant root field: | \(\Q\) | ||
| $\Aut(K/\Q)$ $=$ $\Gal(K/\Q)$: | $C_2^3$ |
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(84=2^{2}\cdot 3\cdot 7\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{84}(1,·)$, $\chi_{84}(71,·)$, $\chi_{84}(41,·)$, $\chi_{84}(43,·)$, $\chi_{84}(13,·)$, $\chi_{84}(83,·)$, $\chi_{84}(55,·)$, $\chi_{84}(29,·)$$\rbrace$ | ||
| This is a CM field. | |||
| Reflex fields: | \(\Q(\sqrt{-3}) \), \(\Q(\sqrt{-1}) \), \(\Q(\sqrt{-7}) \), \(\Q(\sqrt{-21}) \), 8.0.49787136.1$^{4}$ | ||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $\frac{1}{2}a^{5}-\frac{1}{2}a^{3}-\frac{1}{2}a$, $\frac{1}{20}a^{6}-\frac{1}{4}a^{4}+\frac{1}{4}a^{2}-\frac{2}{5}$, $\frac{1}{40}a^{7}-\frac{1}{8}a^{5}+\frac{1}{8}a^{3}+\frac{3}{10}a$
| Monogenic: | No | |
| Index: | Not computed | |
| Inessential primes: | $2$ |
Class group and class number
| Ideal class group: | Trivial group, which has order $1$ |
| |
| Narrow class group: | Trivial group, which has order $1$ |
| |
| Relative class number: | $1$ |
Unit group
| Rank: | $3$ |
| |
| Torsion generator: |
\( -\frac{1}{40} a^{7} + \frac{1}{8} a^{5} - \frac{1}{8} a^{3} - \frac{3}{10} a \)
(order $12$)
|
| |
| Fundamental units: |
$\frac{1}{40}a^{7}-\frac{1}{8}a^{5}+\frac{1}{8}a^{3}+\frac{3}{10}a-1$, $\frac{1}{40}a^{7}-\frac{1}{8}a^{5}+\frac{1}{8}a^{3}-\frac{7}{10}a$, $\frac{1}{10}a^{7}-\frac{9}{20}a^{6}+\frac{1}{2}a^{5}-\frac{3}{4}a^{4}+\frac{1}{2}a^{3}-\frac{5}{4}a^{2}+\frac{6}{5}a-\frac{12}{5}$
|
| |
| Regulator: | \( 22.8515026384 \) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{4}\cdot 22.8515026384 \cdot 1}{12\cdot\sqrt{49787136}}\cr\approx \mathstrut & 0.420624357666 \end{aligned}\]
Galois group
| An abelian group of order 8 |
| The 8 conjugacy class representatives for $C_2^3$ |
| Character table for $C_2^3$ |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/padicField/5.2.0.1}{2} }^{4}$ | R | ${\href{/padicField/11.2.0.1}{2} }^{4}$ | ${\href{/padicField/13.2.0.1}{2} }^{4}$ | ${\href{/padicField/17.2.0.1}{2} }^{4}$ | ${\href{/padicField/19.2.0.1}{2} }^{4}$ | ${\href{/padicField/23.2.0.1}{2} }^{4}$ | ${\href{/padicField/29.2.0.1}{2} }^{4}$ | ${\href{/padicField/31.2.0.1}{2} }^{4}$ | ${\href{/padicField/37.1.0.1}{1} }^{8}$ | ${\href{/padicField/41.2.0.1}{2} }^{4}$ | ${\href{/padicField/43.2.0.1}{2} }^{4}$ | ${\href{/padicField/47.2.0.1}{2} }^{4}$ | ${\href{/padicField/53.2.0.1}{2} }^{4}$ | ${\href{/padicField/59.2.0.1}{2} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(2\)
| 2.2.2.4a1.1 | $x^{4} + 2 x^{3} + 5 x^{2} + 4 x + 5$ | $2$ | $2$ | $4$ | $C_2^2$ | $$[2]^{2}$$ |
| 2.2.2.4a1.1 | $x^{4} + 2 x^{3} + 5 x^{2} + 4 x + 5$ | $2$ | $2$ | $4$ | $C_2^2$ | $$[2]^{2}$$ | |
|
\(3\)
| 3.2.2.2a1.2 | $x^{4} + 4 x^{3} + 8 x^{2} + 8 x + 7$ | $2$ | $2$ | $2$ | $C_2^2$ | $$[\ ]_{2}^{2}$$ |
| 3.2.2.2a1.2 | $x^{4} + 4 x^{3} + 8 x^{2} + 8 x + 7$ | $2$ | $2$ | $2$ | $C_2^2$ | $$[\ ]_{2}^{2}$$ | |
|
\(7\)
| 7.2.2.2a1.2 | $x^{4} + 12 x^{3} + 42 x^{2} + 36 x + 16$ | $2$ | $2$ | $2$ | $C_2^2$ | $$[\ ]_{2}^{2}$$ |
| 7.2.2.2a1.2 | $x^{4} + 12 x^{3} + 42 x^{2} + 36 x + 16$ | $2$ | $2$ | $2$ | $C_2^2$ | $$[\ ]_{2}^{2}$$ |