Normalized defining polynomial
\( x^{8} - 100x^{6} + 3550x^{4} - 51000x^{2} + 292500 \)
Invariants
| Degree: | $8$ |
| |
| Signature: | $[0, 4]$ |
| |
| Discriminant: |
\(466503598080000\)
\(\medspace = 2^{22}\cdot 3^{4}\cdot 5^{4}\cdot 13^{3}\)
|
| |
| Root discriminant: | \(68.17\) |
| |
| Galois root discriminant: | $2^{11/4}3^{1/2}5^{1/2}13^{1/2}\approx 93.9398351563814$ | ||
| Ramified primes: |
\(2\), \(3\), \(5\), \(13\)
|
| |
| Discriminant root field: | \(\Q(\sqrt{13}) \) | ||
| $\Aut(K/\Q)$: | $C_2$ |
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
| Maximal CM subfield: | \(\Q(\sqrt{-3}) \) | ||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $\frac{1}{5}a^{2}$, $\frac{1}{5}a^{3}$, $\frac{1}{50}a^{4}$, $\frac{1}{50}a^{5}$, $\frac{1}{9750}a^{6}+\frac{2}{975}a^{4}+\frac{2}{195}a^{2}$, $\frac{1}{29250}a^{7}+\frac{2}{2925}a^{5}+\frac{2}{585}a^{3}-\frac{1}{3}a$
| Monogenic: | Not computed | |
| Index: | $1$ | |
| Inessential primes: | None |
Class group and class number
| Ideal class group: | $C_{2}\times C_{4}$, which has order $8$ (assuming GRH) |
| |
| Narrow class group: | $C_{2}\times C_{4}$, which has order $8$ (assuming GRH) |
|
Unit group
| Rank: | $3$ |
| |
| Torsion generator: |
\( -\frac{1}{4875} a^{6} + \frac{31}{1950} a^{4} - \frac{82}{195} a^{2} + 4 \)
(order $6$)
|
| |
| Fundamental units: |
$\frac{7}{9750}a^{6}-\frac{167}{1950}a^{4}+\frac{677}{195}a^{2}-48$, $\frac{97}{1950}a^{7}+\frac{528}{1625}a^{6}-\frac{7381}{1950}a^{5}-\frac{15783}{650}a^{4}+\frac{15751}{195}a^{3}+\frac{28567}{65}a^{2}-792a-2249$, $\frac{3619}{29250}a^{7}-\frac{5348}{4875}a^{6}-\frac{24953}{5850}a^{5}+\frac{104753}{1950}a^{4}+\frac{1739}{585}a^{3}-\frac{146972}{195}a^{2}+\frac{2750}{3}a+1613$
|
| |
| Regulator: | \( 7217.53060799 \) (assuming GRH) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{4}\cdot 7217.53060799 \cdot 8}{6\cdot\sqrt{466503598080000}}\cr\approx \mathstrut & 0.694415403004 \end{aligned}\] (assuming GRH)
Galois group
| A solvable group of order 16 |
| The 7 conjugacy class representatives for $D_{8}$ |
| Character table for $D_{8}$ |
Intermediate fields
| \(\Q(\sqrt{-3}) \), 4.0.7488.3 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | deg 16 |
| Degree 8 sibling: | 8.2.2021515591680000.15 |
| Minimal sibling: | This field is its own minimal sibling |
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/padicField/7.2.0.1}{2} }^{3}{,}\,{\href{/padicField/7.1.0.1}{1} }^{2}$ | ${\href{/padicField/11.8.0.1}{8} }$ | R | ${\href{/padicField/17.2.0.1}{2} }^{4}$ | ${\href{/padicField/19.2.0.1}{2} }^{3}{,}\,{\href{/padicField/19.1.0.1}{1} }^{2}$ | ${\href{/padicField/23.2.0.1}{2} }^{4}$ | ${\href{/padicField/29.2.0.1}{2} }^{4}$ | ${\href{/padicField/31.2.0.1}{2} }^{3}{,}\,{\href{/padicField/31.1.0.1}{1} }^{2}$ | ${\href{/padicField/37.2.0.1}{2} }^{3}{,}\,{\href{/padicField/37.1.0.1}{1} }^{2}$ | ${\href{/padicField/41.8.0.1}{8} }$ | ${\href{/padicField/43.4.0.1}{4} }^{2}$ | ${\href{/padicField/47.8.0.1}{8} }$ | ${\href{/padicField/53.2.0.1}{2} }^{4}$ | ${\href{/padicField/59.8.0.1}{8} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(2\)
| 2.2.4.22a1.72 | $x^{8} + 12 x^{7} + 42 x^{6} + 88 x^{5} + 127 x^{4} + 128 x^{3} + 102 x^{2} + 76 x + 23$ | $4$ | $2$ | $22$ | $C_8$ | $$[3, 4]^{2}$$ |
|
\(3\)
| 3.2.2.2a1.2 | $x^{4} + 4 x^{3} + 8 x^{2} + 8 x + 7$ | $2$ | $2$ | $2$ | $C_2^2$ | $$[\ ]_{2}^{2}$$ |
| 3.2.2.2a1.2 | $x^{4} + 4 x^{3} + 8 x^{2} + 8 x + 7$ | $2$ | $2$ | $2$ | $C_2^2$ | $$[\ ]_{2}^{2}$$ | |
|
\(5\)
| 5.4.2.4a1.1 | $x^{8} + 8 x^{6} + 8 x^{5} + 20 x^{4} + 32 x^{3} + 32 x^{2} + 21 x + 4$ | $2$ | $4$ | $4$ | $C_8$ | $$[\ ]_{2}^{4}$$ |
|
\(13\)
| $\Q_{13}$ | $x + 11$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ |
| $\Q_{13}$ | $x + 11$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ | |
| 13.1.2.1a1.1 | $x^{2} + 13$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | |
| 13.1.2.1a1.1 | $x^{2} + 13$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | |
| 13.1.2.1a1.1 | $x^{2} + 13$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ |